

Explaining (how to improve) Diagnostic Reasoning

— *The FAMULUS Project* —

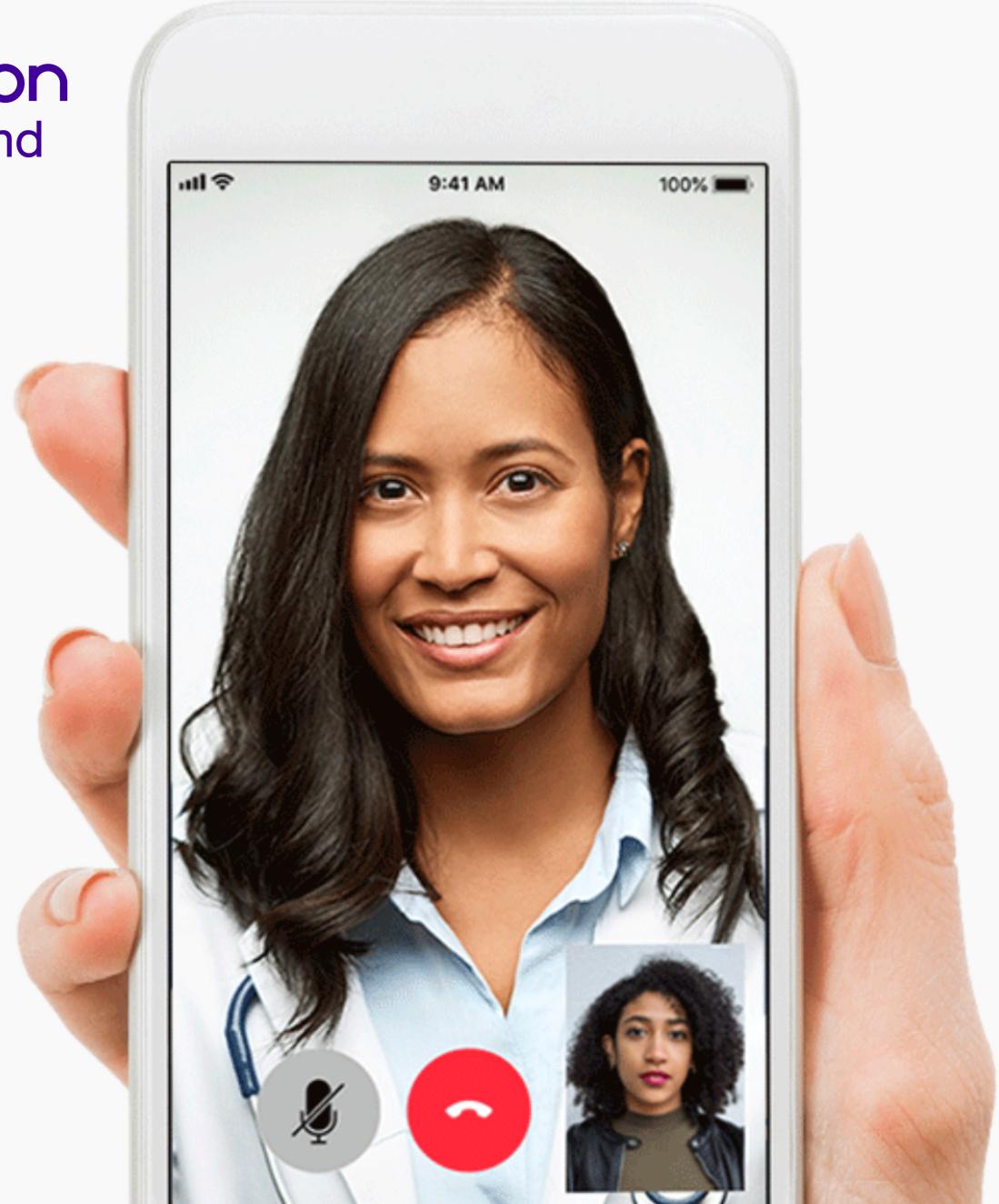
Please don't hesitate
to ask questions
during the talk!

Claudia Schulz

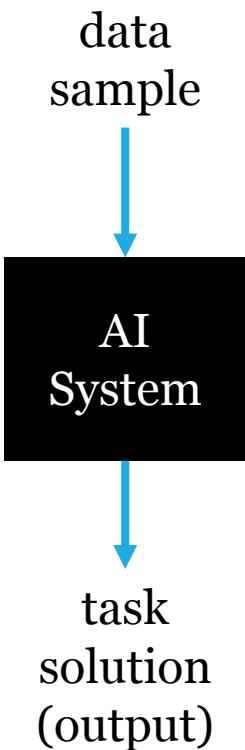
15/01/2020 XAI Seminar

<http://famulus-project.de>

NHS GP appointments just a tap away*


 On mobile in minutes 24/7

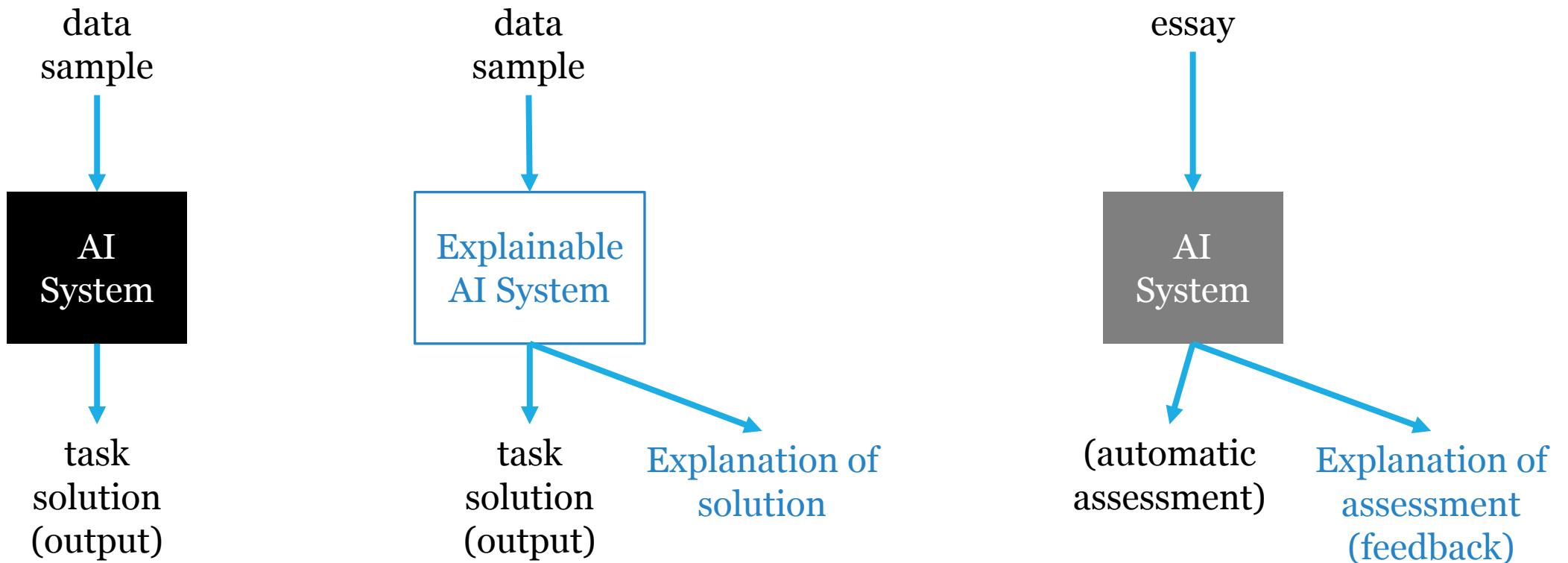
 In person at a choice of locations


 Free digital Healthcheck

[Get Started](#)

*To register you will need to switch from your current GP practice. Once an application is made, a registration period will apply before you are able to access the service. Available for people living or working within the catchment area of one of our clinic locations.

Explainable AI


People with no idea
about AI, telling me my
AI will destroy the world

Me wondering why my
neural network is
classifying a cat as a dog..

Explainable AI

Learning Diagnostic Reasoning

Diagnostic Reasoning

Case Simulation

Carl Berner

Hege Inga Go to Help

Jump to: [Card Top](#) [Question](#) [Answer](#)

Navigation ▾

The next morning you meet Mr. Berner again. After the EGD he was transferred to your ward.

["Mr. Berner, how are you doing today?"](#)

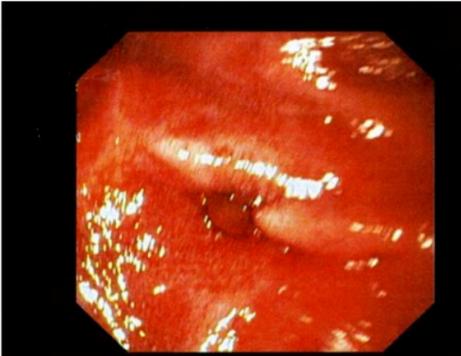
Back at your computer you check for the EGD results (see image on the right):

Stomach: Fresh blood and clots in the stomach, otherwise no abnormalities.

Esophagus: Deep laceration (>2cm / >0.8 in) near the cardia. Injection of 6ml Suprarenin 1:10.000 and placing of three endoclips.

Duodenum: Fresh blood in the duodenum. In the descending duodenum a diverticulum (caliber < 2mm).

Question

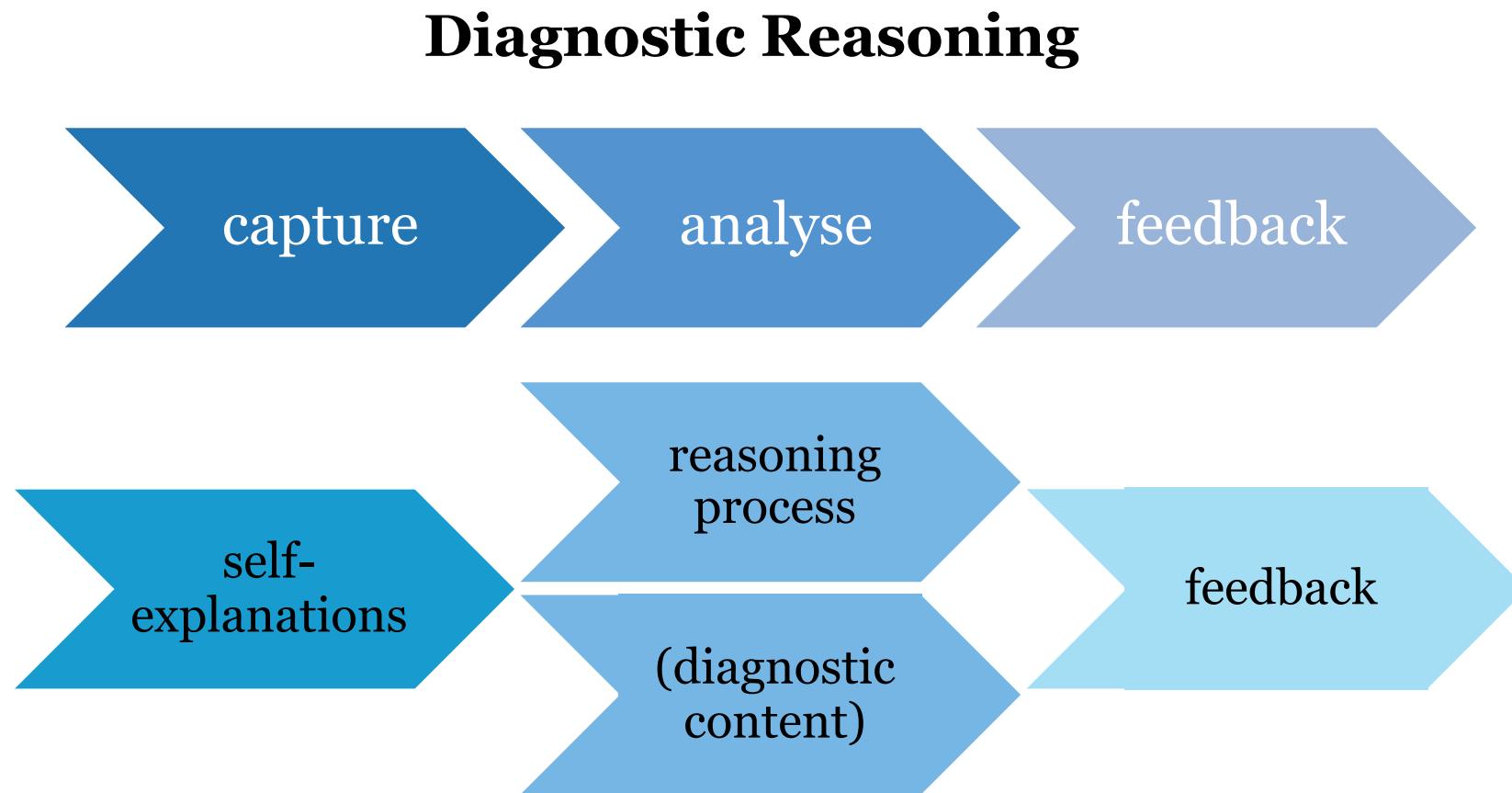

Based on what you know so far - which of the following do you think are related to the laceration in the case of Mr. Berner?

Multiple Choice Answer

A Alcohol abuse
B Coughing
C NSAID abuse
D Anticoagulation
E Eating disorder
F Reflux disease

Submit

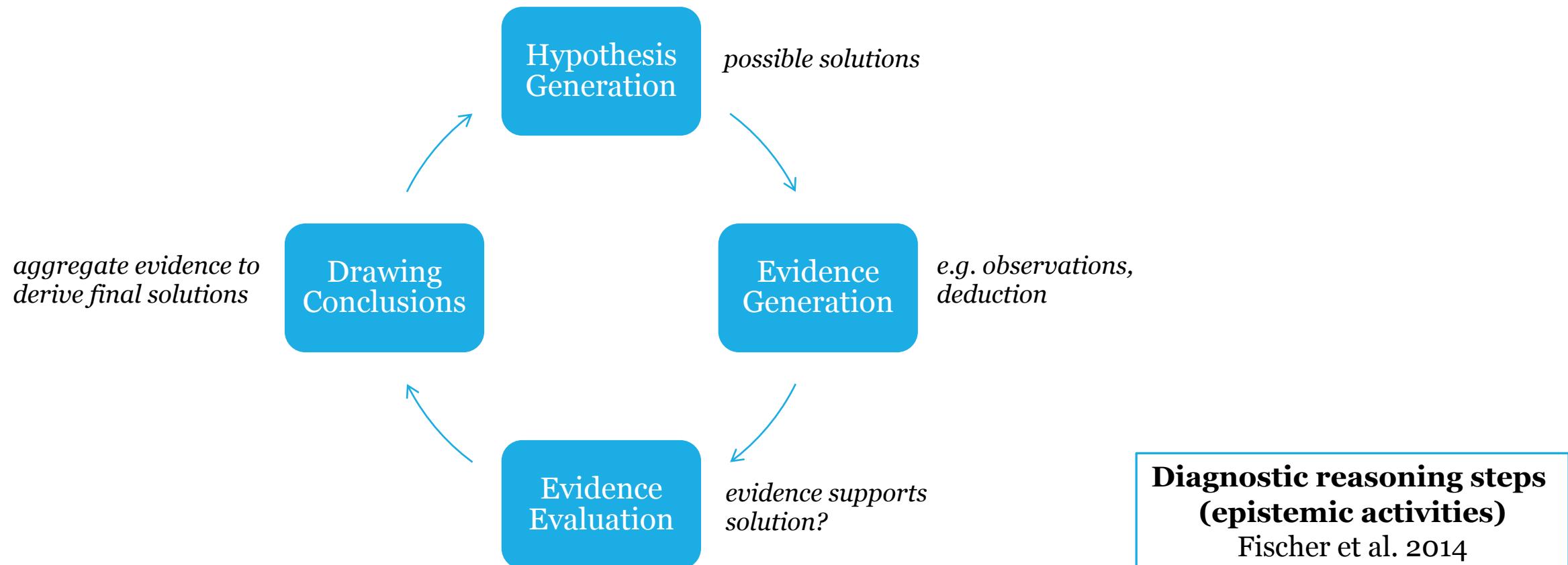
Laceration



Tools/Resources ▾

Expert Feedback ▾

Individual Feedback



Capture: Self-Explanation

The patient reports to be lethargic and feverish. From the anamnesis I learned that he had purulent tonsilitis and is still suffering from symptoms. I first performed some laboratory tests and notice the decreased number of lymphocytes, which can be indicative of a bone marrow disease or an HIV infection. The HIV test is positive. However, the results from the blood cultures are negative, so it is a virus, parasite, or a fungal infection causing the symptoms.

Analyse: Reasoning Process

Self-Explanation with Feedback

Feedback

Well done for thinking about different possible solutions, the generation of **hypotheses** is an important part of diagnosis.

The patient reports to be lethargic and feverish. From the anamnesis I learned that he had purulent tonsilitis and is still suffering from symptoms.

I first performed some laboratory tests and notice the decreased number of lymphocytes, **which can be indicative of a bone marrow disease or an HIV infection.**

The HIV test is positive.

Self-Explanation with Feedback

Feedback

Good that you considered the different **observations** and test results.

The patient reports to be lethargic and feverish.

From the anamnesis I learned that he had purulent tonsilitis and is still suffering from symptoms.

I first performed some laboratory tests and notice the decreased number of **lymphocytes**, which can be indicative of a bone marrow disease or an HIV infection.

The HIV test is positive.

Self-Explanation with Feedback

Feedback

After collecting and considering all evidence, you should decide on the most likely **diagnosis**. This is an important duty of a doctor.

The patient reports to be lethargic and feverish. From the anamnesis I learned that he had purulent tonsilitis and is still suffering from symptoms. I first performed some laboratory tests and notice the decreased number of lymphocytes, which can be indicative of a bone marrow disease or an HIV infection. The HIV test is positive.

Self-Explanation with Reasoning Steps

The patient reports to be lethargic and feverish.
From the anamnesis I learned that he had purulent tonsilitis and is still suffering from symptoms.
I first performed some laboratory tests and notice the decreased number of lymphocytes, which can be indicative of a bone marrow disease or an HIV infection.
The HIV test is positive.
However, the results from the blood cultures are negative, so it is a virus, parasite, or a fungal infection causing the symptoms.

Hypothesis Generation
Evidence Evaluation

Evidence Generation
Drawing Conclusions

Detecting Diagnostic Reasoning Steps

- 1) Corpus Creation**
- 2) Automatic Detection**

The patient reports to be lethargic and feverish. From the anamnesis I learned that he had purulent tonsilitis and is still suffering from symptoms. I first performed some laboratory tests and notice the decreased number of lymphocytes, which can be indicative of a bone marrow disease or an HIV infection. The HIV test is positive. However, the results from the blood cultures are negative, so it is a virus, parasite, or a fungal infection causing the symptoms.

Hypothesis Generation
Evidence Evaluation

Evidence Generation
Drawing Conclusions

Corpus Creation

Schulz, Meyer, Gurevych. "[Challenges in the Automatic Analysis of Students' Diagnostic Reasoning](#)."
Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019.

Corpus Creation

- Two domains:
 - Medicine Domain (MeD): 1131 self-explanations → 650 used
 - Teaching Domain (TeD): 976 self-explanations → 550 used
- (Domain) Expert annotators
- Cross-domain annotation scheme
 - Segmentation + classification
 - Easily adaptable to new domains
- German

INCEPTION

<https://inception-project.github.io/>

Active Learning

Session

Layer: Named entity

Text: Illinois

Label: LOC

Score: 1

Delta: 1

Accept, Reject, Skip

Learning History

- Berkeley http://www.wikidata.org/entity/Q168756 skipped
- Tesla PER accepted
- Science OTH rejected
- Tesla PER accepted

Annotation

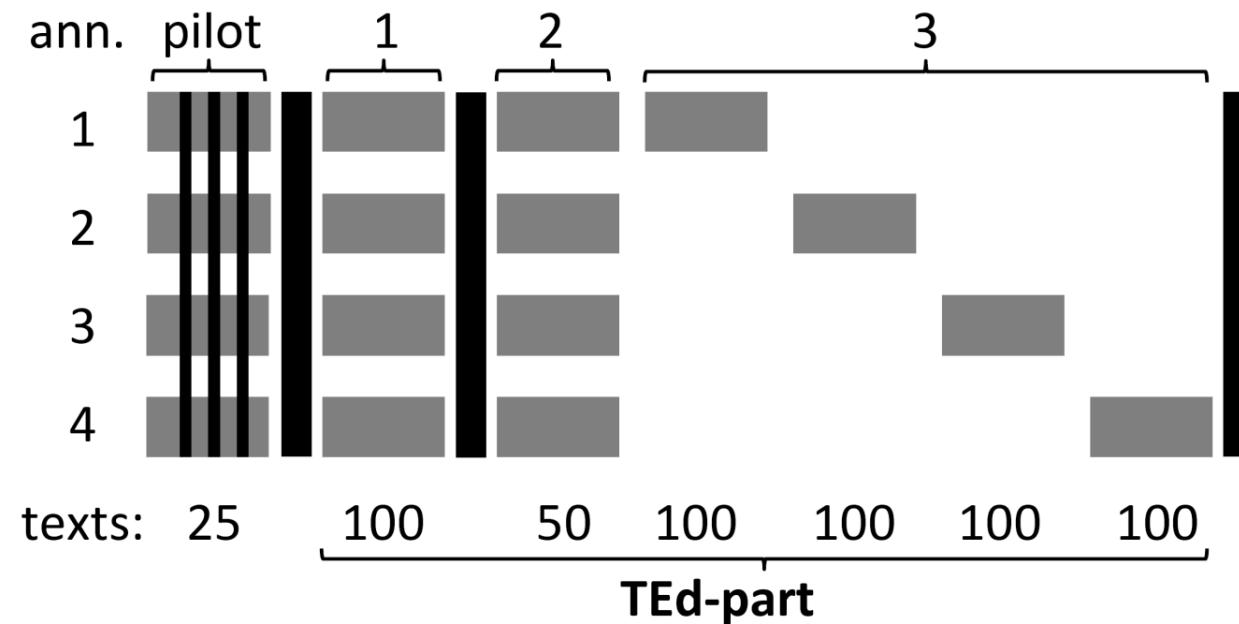
Barack Obama I PER -subject- date of birth -subject- born -object- TIME occupation -object-
 1 Barack Hussein Obama II born August 4, 1961) is an
 -subject- -object- politician position held -end time- -start time- -object-
 American politician who served as the 44th
 -object- President of the United States of America 2009 2017 TIME
 President of the United States from 2009 to 2017 .
 2 The first African American to assume the presidency, he was
 Illinois River
 Illinois
 Illinois Senate
 LOC
 previously the junior United States Senator from Illinois from
 2005 to 2008.
 LOC
 3 He served in the Illinois State Senate from 1997 until 2004.

Illinois Senate
 upper chamber of the Illinois General Assembly, the legislative branch of the government of the state of Illinois in the United States

Layer: Surface form

Annotation

Text: Illinois


identifier: illi

value: Illinois
 Illinois Senate
 Illinois River
 Governor of Illinois
 Alton
 Illinois Country
 Illinois Territory

IN

Corpus Creation

Inter-Annotator Agreement

Domain	α_U	α_U -HG	α_U -EG	α_U -EE	α_U -DC	α_U -segment	$\uparrow\alpha_U$ -pair	$\downarrow\alpha_U$ -pair
medicine	0.67	0.60	0.65	0.75	0.56	0.86	0.71	0.62
teaching	0.65	0.43	0.56	0.75	0.49	0.82	0.67	0.63

Table 1: Inter annotator agreement (IAA) in terms of Krippendorff's α_U .

Inter-Annotator Agreement

Domain	α_U	α_U -HG	α_U -EG	α_U -EE	α_U -DC	α_U -segment	$\uparrow\alpha_U$ -pair	$\downarrow\alpha_U$ -pair
medicine	0.67	0.60	0.65	0.75	0.56	0.86	0.71	0.62
teaching	0.65	0.43	0.56	0.75	0.49	0.82	0.67	0.63

Table 1: Inter annotator agreement (IAA) in terms of Krippendorff's α_U .

Inter-Annotator Agreement

Domain	α_U	α_U -HG	α_U -EG	α_U -EE	α_U -DC	α_U -segment	$\uparrow\alpha_U$ -pair	$\downarrow\alpha_U$ -pair
medicine	0.67	0.60	0.65	0.75	0.56	0.86	0.71	0.62
teaching	0.65	0.43	0.56	0.75	0.49	0.82	0.67	0.63

Table 1: Inter annotator agreement (IAA) in terms of Krippendorff's α_U .

Inter-Annotator Agreement

Domain	α_U	α_U -HG	α_U -EG	α_U -EE	α_U -DC	α_U -segment	$\uparrow\alpha_U$ -pair	$\downarrow\alpha_U$ -pair
medicine	0.67	0.60	0.65	0.75	0.56	0.86	0.71	0.62
teaching	0.65	0.43	0.56	0.75	0.49	0.82	0.67	0.63

Table 1: Inter annotator agreement (IAA) in terms of Krippendorff's α_U .

Inter-Annotator Agreement

Domain	α_U	α_U -HG	α_U -EG	α_U -EE	α_U -DC	α_U -segment	$\uparrow\alpha_U$ -pair	$\downarrow\alpha_U$ -pair
medicine	0.67	0.60	0.65	0.75	0.56	0.86	0.71	0.62
teaching	0.65	0.43	0.56	0.75	0.49	0.82	0.67	0.63

Table 1: Inter annotator agreement (IAA) in terms of Krippendorff's α_U .

Domain	α_U -HG&DC	α_U -EE&DC	α_U -HG&EE	α_U -EG&EE	α_U -EG&HG	α_U -EG&DC
medicine	0.71	0.85	0.78	0.78	0.61	0.56
teaching	0.62	0.81	0.77	0.72	0.47	0.48

Table 2: IAA (α_U) when merging epistemic activities. Bold indicates a value higher than both single activities.

Corpus Statistics

- majority vote (4/5, 3/4) + annotator meeting
- MeD av. length: 63.8 tokens
- TeD av. Length: 100.2 tokens

	EG	EE	HG	DC	
MeD	#	219	2124	623	493
	av. #	0.35	3.27	0.96	0.76
	av len.	10.1	11.6	9.0	16.0
TeD	#	354	2671	311	444
	av. #	0.64	4.86	0.57	0.81
	av. len.	12.4	12.1	13.5	15.4

Table 3: Corpus statistics in terms of absolute number (#), average number per text (av. #), and average number of tokens (av. len), where EE/EG (and similar) denotes an overlap of an EG and EE segment.

Corpus Statistics

- majority vote (4/5, 3/4) + annotator meeting
- MeD av. length: 63.8 tokens
- TeD av. Length: 100.2 tokens

		EG	EE	HG	DC
MeD	#	219	2124	623	493
	av. #	0.35	3.27	0.96	0.76
	av len.	10.1	11.6	9.0	16.0
TeD	#	354	2671	311	444
	av. #	0.64	4.86	0.57	0.81
	av. len.	12.4	12.1	13.5	15.4

Table 3: Corpus statistics in terms of absolute number (#), average number per text (av. #), and average number of tokens (av. len), where EE/EG (and similar) denotes an overlap of an EG and EE segment.

Corpus Statistics

- majority vote (4/5, 3/4) + annotator meeting
- MeD av. length: 63.8 tokens
- TeD av. Length: 100.2 tokens

The x-ray and the subsequent MRI confirmed
a vertebral body fracture

	EG	EE	HG	DC	EG/EE	HG/DC	DC/EE	EG/HG	HG/EE	EG/DC	
MeD	#	219	2124	623	493	5	4	342	0	12	4
	av. #	0.35	3.27	0.96	0.76	—	—	—	—	—	—
	av len.	10.1	11.6	9.0	16.0	3.8	8.5	9.8	—	5.7	6.8
TeD	#	354	2671	311	444	8	2	143	3	8	3
	av. #	0.64	4.86	0.57	0.81	—	—	—	—	—	—
	av. len.	12.4	12.1	13.5	15.4	7.9	22.0	10.9	6.0	11.1	11.7

Table 3: Corpus statistics in terms of absolute number (#), average number per text (av. #), and average number of tokens (av. len), where EE/EG (and similar) denotes an overlap of an EG and EE segment.

Detecting Diagnostic Reasoning Steps

- ✓
- 1) **Corpus Creation**
- 2) **Automatic Detection**

The patient reports to be lethargic and feverish. From the anamnesis I learned that he had purulent tonsilitis and is still suffering from symptoms. I first performed some laboratory tests and notice the decreased number of lymphocytes, which can be indicative of a bone marrow disease or an HIV infection. The HIV test is positive. However, the results from the blood cultures are negative, so it is a virus, parasite, or a fungal infection causing the symptoms.

Hypothesis Generation
Evidence Evaluation

Evidence Generation
Drawing Conclusions

Automatic Detection of Diagnostic Reasoning Steps

Schulz, Meyer, Gurevych. "[Challenges in the Automatic Analysis of Students' Diagnostic Reasoning](#)."
Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019.

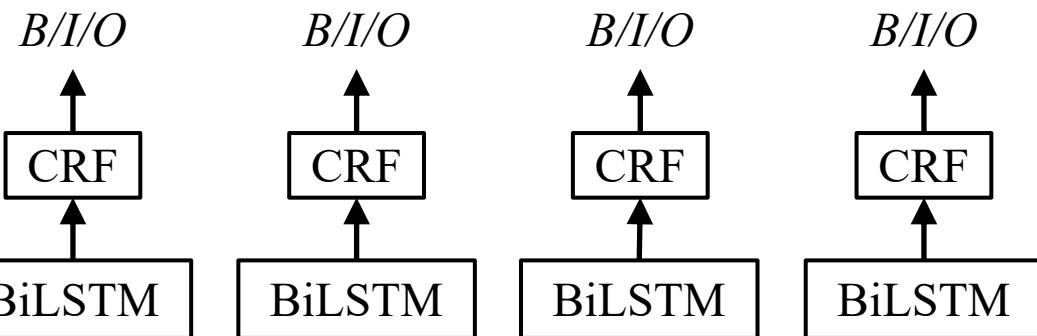
Automatic Detection

3 Challenges:

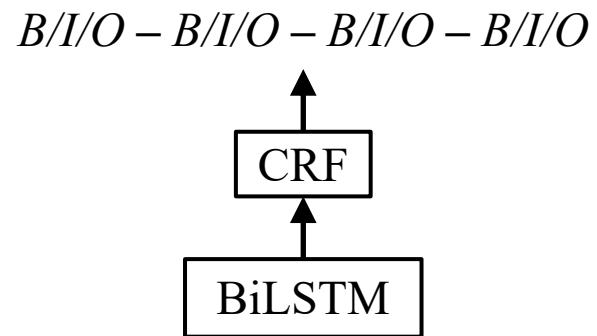
1. segments of arbitrary length (C1),
2. distinguishing different epistemic activity types (C2)
3. overlapping epistemic activity segments (C3)

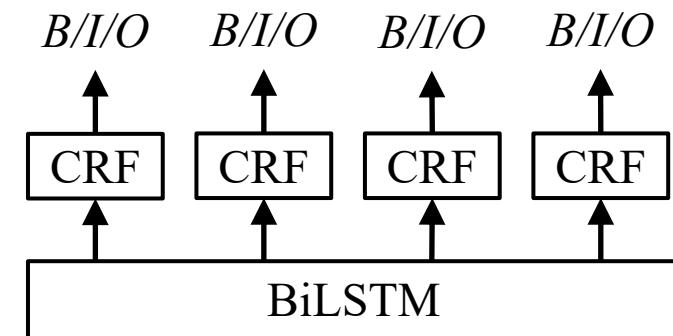
→ **multi-label problem:** $C' \subset C$

Approach: 3 problem transformations



Multi-class sequence labelling
 $C = (\{B, I\} \times A) \cup \{O\}$
 $A = \{HG, EG, EE, DC\}$




Problem Transformations

SEPARATE:
multiple (single-label)
multi-class problems

CONCAT:
unique (single-label)
multi-class problem

MULTI-OUTPUT:
Multidimensional
classification problem


Baseline Transformations

1. PREF-BASELINE: unique (single-label) multi-class problem

- Without overlaps
- Using preference order: DC > HG > EG > EE

B/I/O – EG/EE/HG/DC

2. MAJ-BASELINE: I-EE for all tokens

Evaluation Metrics

- Hamming Loss

$$HL = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \frac{1}{|C|} \sum_{c \in C} \mathbf{xor}(y_{x,c}, \hat{y}_{x,c})$$

$$y_{x,c} = \begin{cases} 1 & \text{if token } x \text{ has label } c \\ 0 & \text{otherwise} \end{cases}$$

- C1 (Segmentation)

$$M_S(a) = \text{macro-F1}(C_a, \mathcal{X})$$

for $a \in A = \{HG, EG, EE, DC\}$

$$C_{HG} = \{B - HG, I - HG, O - HG\}$$

- C2 (Type Distinction)

$$M_A = \text{macro-F1}(\mathcal{P}(A), \mathcal{X})$$

- C3 (Overlaps)

$$M_O(a) = \text{macro-F1}(C_a, \mathcal{X}_{\text{overlap}})$$

Automatic Detection: Results

$$HL = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \frac{1}{|C|} \sum_{c \in C} \mathbf{xor}(y_{x,c}, \hat{y}_{x,c})$$

Architecture	HL	MS				MA		MO			
		EG	EE	HG	DC	all	EG	EE	HG	DC	
Med	MULTI-OUTPUT	0.07	71.60	80.20 ⁺	69.28	65.32	22.21 ⁺	63.09	66.39 ⁺	45.50	44.76
	SEPARATE	0.07	70.87	80.24 ⁺	68.53	65.80	21.25 ⁺	63.15	65.31 ⁺	50.26	49.26
	CONCAT	0.06 ⁺⁺⁺	71.05	79.96 ⁺	69.36	65.18	23.01 ⁺⁺	67.86	66.43 ⁺	44.51	45.40
	PREF-BASELINE	0.07	70.02	75.46	69.32	65.74	19.77	52.91	38.87	46.34	49.03
	MAJ-BASELINE									1	1.39
	human upper bound		Conclusion: No distinction possible between neural architectures!								8
TeD	MULTI-OUTPUT	0.07	78.55	78.87	57.10	51.77	19.98	58.42	71.98	52.81 ⁺	47.10
	SEPARATE	0.07	76.38	79.47 ⁺	57.05	57.52	18.34	54.68	78.89 ⁺⁺⁺	32.09	36.11
	CONCAT	0.06 ⁺⁺	78.71 ⁺	79.07 ⁺	57.12	62.53 ⁺	21.68 ⁺⁺	56.75	68.75 ⁺	32.51	51.97 ⁺
	PREF-BASELINE	0.06	77.60	77.21	55.67	61.02	18.93	57.25	45.15	36.62	49.71
	MAJ-BASELINE	0.11	31.75	23.11	32.03	30.97	4.42	31.21	30.75	32.61	6.28
	human upper bound	0.03	93.29	90.71	81.77	82.11	30.58	78.68	88.99	79.96	95.04

Automatic Detection: Results

$$M_S(a) = \text{macro-}F1(C_a, \mathcal{X})$$

	Architecture	HL		M _S			M _A		M _O		
		all	EG	EE	HG	DC	all	EG	EE	HG	DC
Med	MULTI-OUTPUT	0.07	71.60	80.20 ⁺	69.28	65.32	22.21 ⁺	63.09	66.39 ⁺	45.50	44.76
	SEPARATE	0.07	70.87	80.24 ⁺	68.53	65.80	21.25 ⁺	63.15	65.31 ⁺	50.26	49.26
	CONCAT	0.06 ⁺⁺⁺	71.05	79.96 ⁺	69.36	65.18	23.01 ⁺⁺	67.86	66.43 ⁺	44.51	45.40
	PREF-BASELINE	0.07	70.02	75.46	69.32	65.74	19.77	52.91	38.87	46.34	49.03
	MAJ-BASELINE	0.11	32.70	23.49	30.48	29.96	4.25	33.13	31.00	32.61	1.39
	human upper bound	0.04	85.61	90.25	86.37	85.58	35.06	100.00	76.15	91.38	76.50
TeD	MULTI-OUTPUT	0.07	78.53	78.87 ⁺	57.16	61.77	19.96 ⁺	58.42	71.98 ⁺	32.61 ⁺	47.10
	SEPARATE	0.07	76.38	79.47 ⁺	57.05	57.52	18.34	54.68	78.89 ⁺⁺⁺	32.09	36.11
	CONCAT	0.06 ⁺⁺	78.71 ⁺	79.07 ⁺	57.12	62.53 ⁺	21.68 ⁺⁺⁺	56.75	68.75 ⁺	32.51	51.97 ⁺
	PREF-BASELINE	0.06	77.60	77.21	55.67	61.02	18.93	57.25	45.15	36.62	49.71
	MAJ-BASELINE	0.11	31.75	23.11	32.03	30.97	4.42	31.21	30.75	32.61	6.28
	human upper bound	0.03	93.29	90.71	81.77	82.11	30.58	78.68	88.99	79.96	95.04

Automatic Detection: Results

$$M_S(a) = \text{macro-}F1(C_a, \mathcal{X})$$

		HL		M _S				M _A		M _O			
		Architecture	all	EG	EE	HG	DC	all	EG	EE	HG	DC	
Med	MULTI-OUTPUT	0.07	71.60	80.20 ⁺	69.28	65.32	22.21 ⁺	63.09	66.39 ⁺	45.50	44.76		
	SEPARATE	0.07	70.87	80.24 ⁺	68.53	65.80	21.25 ⁺	63.15	65.31 ⁺	50.26	49.26		
	CONCAT	0.06 ⁺⁺⁺	71.05	79.96 ⁺	69.36	65.18	23.01 ⁺⁺	67.86	66.43 ⁺	44.51	45.40		
	PREF-BASELINE	0.07	70.02	75.46	69.32	65.74	19.77	52.91	38.87	46.34	49.03		
	MAJ-BASELINE	0.11	32.70	23.49	30.48	29.96	4.25	33.13	31.00	32.61	1.39		
	human upper bound	0.04	85.61	90.25	86.37	85.58	35.06	100.00	76.15	91.38	76.50		
TeD	MULTI-OUTPUT	0.07	78.53	78.87 ⁺	57.16	61.77	19.96 ⁺	58.42	71.98 ⁺	32.61 ⁺	47.10		
	SEPARATE	0.07	76.38	79.47 ⁺	57.05	57.52	18.34	54.68	78.89 ⁺⁺⁺	32.09	36.11		
	CONCAT	0.06 ⁺⁺	78.71 ⁺	79.07 ⁺	57.12	62.53 ⁺	21.68 ⁺⁺⁺	56.75	68.75 ⁺	32.51	51.97 ⁺		
	PREF-BASELINE	0.06	77.60	77.21	55.67	61.02	18.93	57.25	45.15	36.62	49.71		
	MAJ-BASELINE	0.11	31.75	23.11	32.03	30.97	4.42	31.21	30.75	32.61	6.28		
	human upper bound	0.03	93.29	90.71	81.77	82.11	30.58	78.68	88.99	79.96	95.04		

Automatic Detection: Results

$$M_S(a) = \text{macro-}F1(C_a, \mathcal{X})$$

	Architecture	HL		M _S				M _A		M _O			
		all	EG	EE	HG	DC	all	EG	EE	HG	DC		
Med	MULTI-OUTPUT	0.07	71.60	80.20 ⁺	69.28	65.32	22.21 ⁺	63.09	66.39 ⁺	45.50	44.76		
	SEPARATE	0.07	70.87	80.24 ⁺	68.53	65.80	21.25 ⁺	63.15	65.31 ⁺	50.26	49.26		
	CONCAT	0.06 ⁺⁺⁺	71.05	79.96 ⁺	69.36	65.18	23.01 ⁺⁺	67.86	66.43 ⁺	44.51	45.40		
	PREF-BASELINE	0.07	70.02	75.46	69.32	65.74	19.77	52.91	38.87	46.34	49.03		
	MAJ-BASELINE												1.39
	human	Conclusion: Neural architectures perform segmentation reasonably well!											76.50
TeD	MULTI-OUTPUT												47.10
	SEPARATE	0.07	76.38	79.47 ⁺	57.05	57.52	18.34	54.68	78.89 ⁺⁺⁺	32.09	36.11		
	CONCAT	0.06 ⁺⁺	78.71 ⁺	79.07 ⁺	57.12	62.53 ⁺	21.68 ⁺⁺⁺	56.75	68.75 ⁺	32.51	51.97 ⁺		
	PREF-BASELINE	0.06	77.60	77.21	55.67	61.02	18.93	57.25	45.15	36.62	49.71		
	MAJ-BASELINE	0.11	31.75	23.11	32.03	30.97	4.42	31.21	30.75	32.61	6.28		
	human upper bound	0.03	93.29	90.71	81.77	82.11	30.58	78.68	88.99	79.96	95.04		

Automatic Detection: Results

Upper Bound: 62.5

$$M_A = \text{macro-}F1(\mathcal{P}(A), \mathcal{X})$$

	Architecture	<i>HL</i>		<i>M_S</i>			<i>M_A</i>	<i>M_O</i>			
		all	EG	EE	HG	DC		all	EG	EE	HG
Med	MULTI-OUTPUT	0.07	71.60	80.20 ⁺	69.28	65.32	22.21 ⁺	63.09	66.39 ⁺	45.50	44.76
	SEPARATE	0.07	70.87	80.24 ⁺	68.53	65.80	21.25 ⁺	63.15	65.31 ⁺	50.26	49.26
	CONCAT	0.06 ⁺⁺⁺	71.05	79.96 ⁺	69.36	65.18	23.01 ⁺⁺	67.86	66.43 ⁺	44.51	45.40
	PREF-BASELINE	0.07	70.02	75.46	69.32	65.74	19.77	52.91	38.87	46.34	49.03
	MAJ-BASELINE										1.39
	human upper bound		Conclusion: Distinction of different reasoning steps is highly challenging!								
TeD	MULTI-OUTPUT	0.07	78.55	78.87	57.16	51.77	19.98	58.42	71.98	52.61	47.10
	SEPARATE	0.07	76.38	79.47 ⁺	57.05	57.52	18.34	54.68	78.89 ⁺⁺⁺	32.09	36.11
	CONCAT	0.06 ⁺⁺	78.71 ⁺	79.07 ⁺	57.12	62.53 ⁺	21.68 ⁺⁺	56.75	68.75 ⁺	32.51	51.97 ⁺
	PREF-BASELINE	0.06	77.60	77.21	55.67	61.02	18.93	57.25	45.15	36.62	49.71
	MAJ-BASELINE	0.11	31.75	23.11	32.03	30.97	4.42	31.21	30.75	32.61	6.28
	human upper bound	0.03	93.29	90.71	81.77	82.11	30.58	78.68	88.99	79.96	95.04

Upper Bound: 62.5

$$M_A = \text{macro-}F1(\mathcal{P}(A), \mathcal{X})$$

Automatic Detection: Results

Architecture	<i>HL</i>		<i>M_S</i>				<i>M_A</i>		<i>M_O</i>		
	all	EG	EE	HG	DC		all	EG	EE	HG	DC
Med	MULTI-OUTPUT	0.07	71.60	80.20 ⁺	69.28	65.32	22.21 ⁺	63.09	66.39 ⁺	45.50	44.76
	SEPARATE	0.07	70.87	80.24 ⁺	68.53	65.80	21.25 ⁺	63.15	65.31 ⁺	50.26	49.26
	CONCAT	0.06 ⁺⁺⁺	71.05	79.96 ⁺	69.36	65.18	23.01 ⁺⁺	67.86	66.43 ⁺	44.51	45.40
	PREF-BASELINE	0.07	70.02	75.46	69.32	65.74	19.77	52.91	38.87	46.34	49.03
	MAJ-BASELINE									1	1.39
	human upper bound		Conclusion: Overlapping segments are highly challenging!								76.50
TeD	MULTI-OUTPUT	0.07	78.55	78.87	57.10	51.77	19.98	58.42	71.98	52.81 ⁺	47.10
	SEPARATE	0.07	76.38	79.47 ⁺	57.05	57.52	18.34	54.68	78.89 ⁺⁺⁺	32.09	36.11
	CONCAT	0.06 ⁺⁺	78.71 ⁺	79.07 ⁺	57.12	62.53 ⁺	21.68 ⁺⁺	56.75	68.75 ⁺	32.51	51.97 ⁺
	PREF-BASELINE	0.06	77.60	77.21	55.67	61.02	18.93	57.25	45.15	36.62	49.71
	MAJ-BASELINE	0.11	31.75	23.11	32.03	30.97	4.42	31.21	30.75	32.61	6.28
	human upper bound	0.03	93.29	90.71	81.77	82.11	30.58	78.68	88.99	79.96	95.04

Upper Bound: 62.5

$$M_A = \text{macro-}F1(\mathcal{P}(A), \mathcal{X})$$

Automatic Detection: Results

	Architecture	<i>HL</i>		<i>M_S</i>			<i>M_A</i>		<i>M_O</i>		
		all	EG	EE	HG	DC	all	EG	EE	HG	DC
Med	MULTI-OUTPUT	0.07	71.60	80.20 ⁺	69.28	65.32	22.21 ⁺	63.09	66.39 ⁺	45.50	44.76
	SEPARATE	0.07	70.87	80.24 ⁺	68.53	65.80	21.25 ⁺	63.15	65.31 ⁺	50.26	49.26
	CONCAT	0.06 ⁺⁺⁺	71.05	79.96 ⁺	69.36	65.18	23.01 ⁺⁺	67.86	66.43 ⁺	44.51	45.40
	PREF-BASELINE	0.07	70.02	75.46	69.32	65.74	19.77	52.91	38.87	46.24	49.03
	MAJ-BASELINE										1.39
	human upper bound										76.50
TeD	MULTI-OUTPUT	0.07	78.53	78.87 ⁺	57.16	61.77	19.96 ⁺	58.42	71.98 ⁺	32.61 ⁺	47.10
	SEPARATE	0.07	76.38	79.47 ⁺	57.05	57.52	18.34	54.68	78.89 ⁺⁺⁺	32.09	36.11
	CONCAT	0.06 ⁺⁺	78.71 ⁺	79.07 ⁺	57.12	62.53 ⁺	21.68 ⁺⁺⁺	56.75	68.75 ⁺	32.51	51.97 ⁺
	PREF-BASELINE	0.06	77.60	77.21	55.67	61.02	18.93	57.25	45.15	36.62	49.71
	MAJ-BASELINE	0.11	31.75	23.11	32.03	30.97	4.42	31.21	30.75	32.61	6.28
	human upper bound	0.03	93.29	90.71	81.77	82.11	30.58	78.68	88.99	79.96	95.04

Conclusion: No architecture wins!

Detecting Diagnostic Reasoning Steps

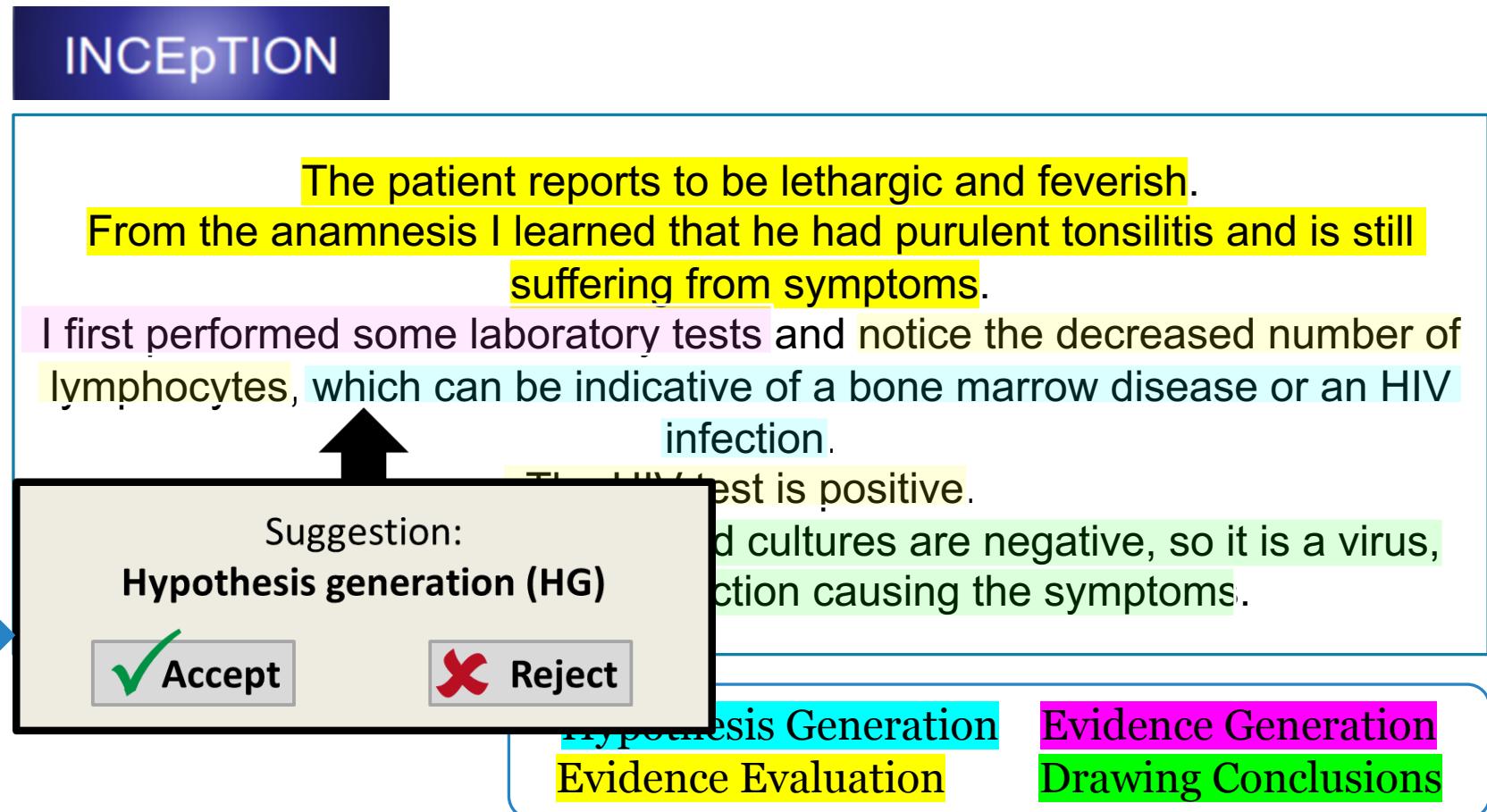
- ✓ 1) Corpus Creation
- ✓ 2) Automatic Detection

The patient reports to be lethargic and feverish. From the anamnesis I learned that he had purulent tonsilitis and is still suffering from symptoms. I first performed some laboratory tests and notice the decreased number of lymphocytes, which can be indicative of a bone marrow disease or an HIV infection. The HIV test is positive. However, the results from the blood cultures are negative, so it is a virus, parasite, or a fungal infection causing the symptoms.

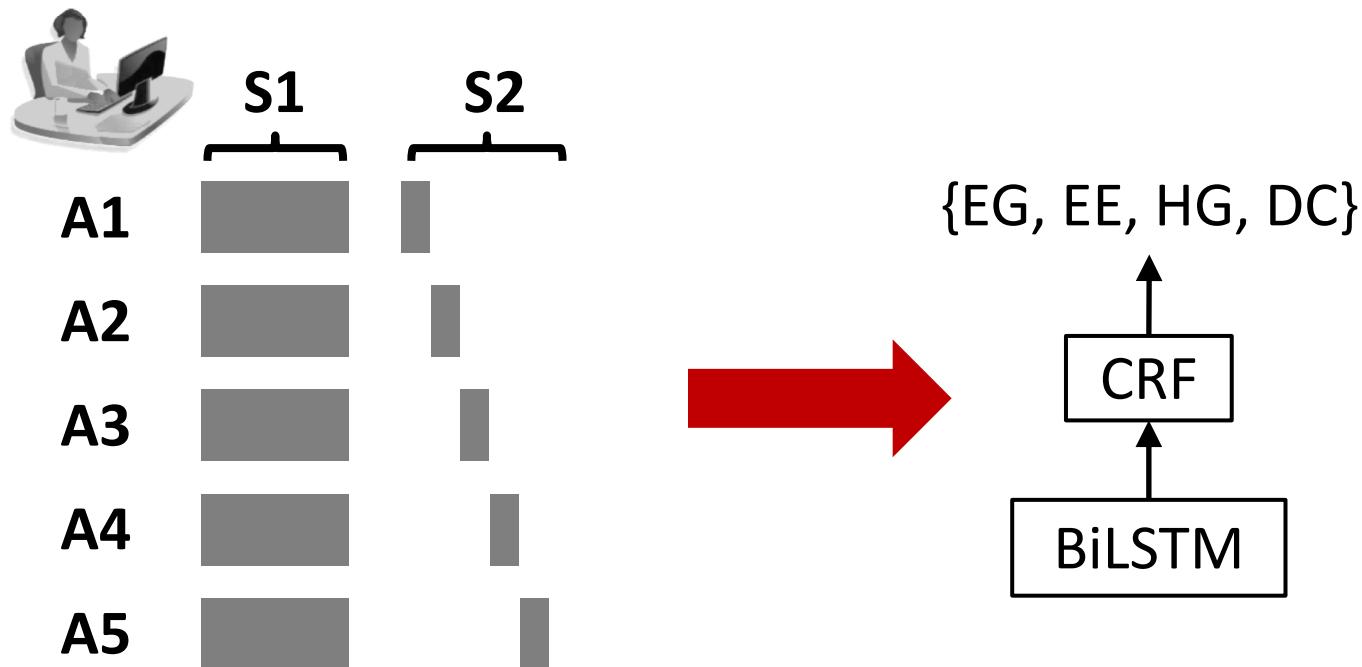
Hypothesis Generation
Evidence Evaluation

Evidence Generation
Drawing Conclusions

Annotating the 2nd half of self-explanations


Schulz, et al. "[Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains.](#)"

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019.


Extending the Corpus

 predictions
(PREF-BASELINE)

Training Data and Suggestion Quality

univ(er)sal model: $F_1 \approx .63$
pers(onalized) models: $F_1 \approx .55$

Annotation Suggestions in INCEpTION

The screenshot shows the INCEpTION annotation interface. The top navigation bar includes 'Annotation', 'Home', 'CIS: Pädagogik - EDAs RecoTrue (3)', 'Help', 'schulz', and 'Log out (automatically in 29 min)'. The toolbar below has sections for 'Document' (Open, Prev., Next, Export, Settings), 'Page' (First, Prev., Go to, Next, Last), 'Script', 'Help' (Guidelines), and 'Workflow' (Reset, Finish). The main content area displays a document titled 'CIS: Pädagogik - EDAs RecoTrue (3)/3CVE6SB_2_7.txt' with 5 sentences. Annotations are shown as colored boxes: yellow for 'EvidenzGeneration', blue for 'EvidenzEvaluation', and grey for 'Schlussfolgerung'. The sidebar on the right contains a 'Layer' section for 'ED Aktivität' with instructions for creating relations, and an 'Annotation' section with a text input field, a 'Delete' button, and a 'Clear' button. It also includes 'Alle' (All), 'Evidenz' (Evidence), and 'Typ' (Type) dropdowns.

Annotation

1 Durch die Beobachtung von Tobias im Unterricht und dem Gespräch mit seinen Eltern, EvidenzGeneration
wird klar, dass Tobias offenbar große Probleme hat an einer Sache dranzubleiben, EvidenzEvaluation
sei es an Aufgaben in der Schule oder an Hausaufgaben die zuhause auszuführen sind. EvidenzEvaluation
Neben der Konzentrationschwäche und Hyperaktivität fällt auf das Tobias Probleme hat sich an Regeln zu halten. Schlussfolgerung
2 Da dies vermehrt und schon seit der ersten Klasse auftritt, kann von ADHS gesprochen werden. Schlussfolgerung
3 Weshalb sich diese Hyperaktivität in der 2ten Klasse verstärkt ist unklar. Schlussfolgerung
4 Hierzu müsste Tobias weiter beobachtet werden. EvidenzGeneration
5 Um aber einen weiteren Leistungsabfall zu verhindern, sollten Maßnahmen getroffen werden. EvidenzGeneration

Layer

ED Aktivität

Create a **ED Relation** relation by drawing an arc between annotations of this layer.

Annotation

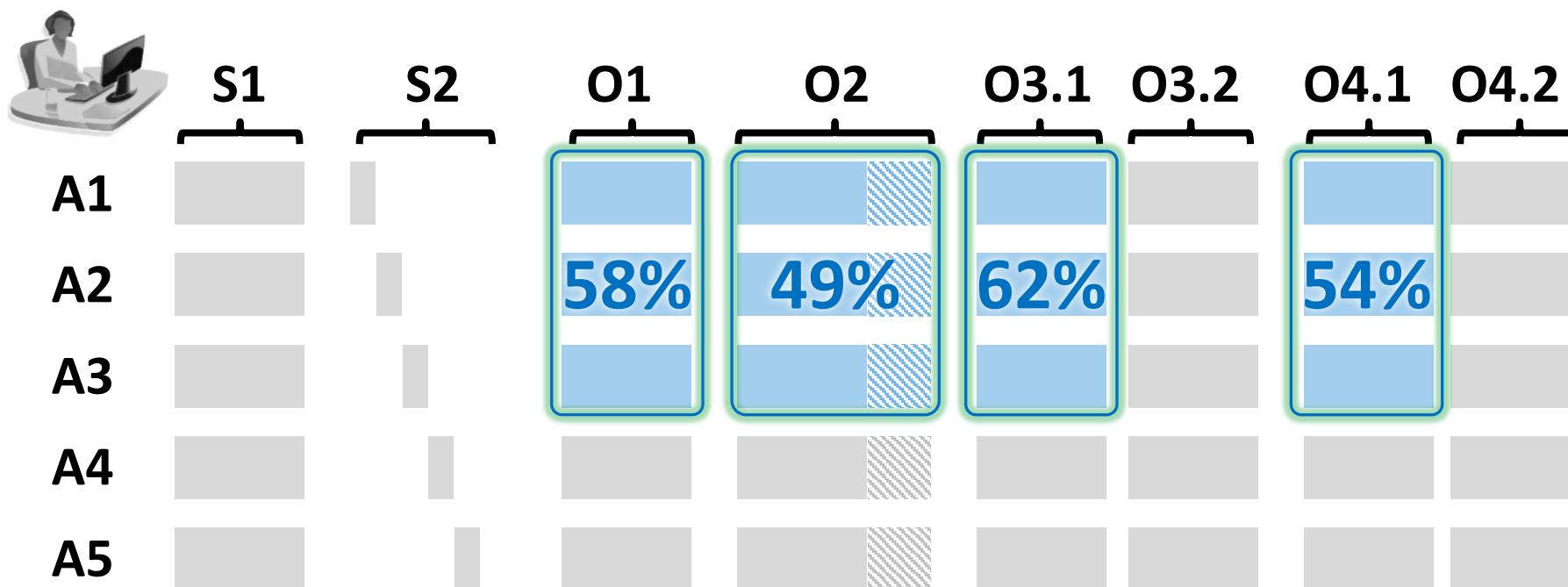
Text Durch die Beobachtung von Tobias im Unterricht

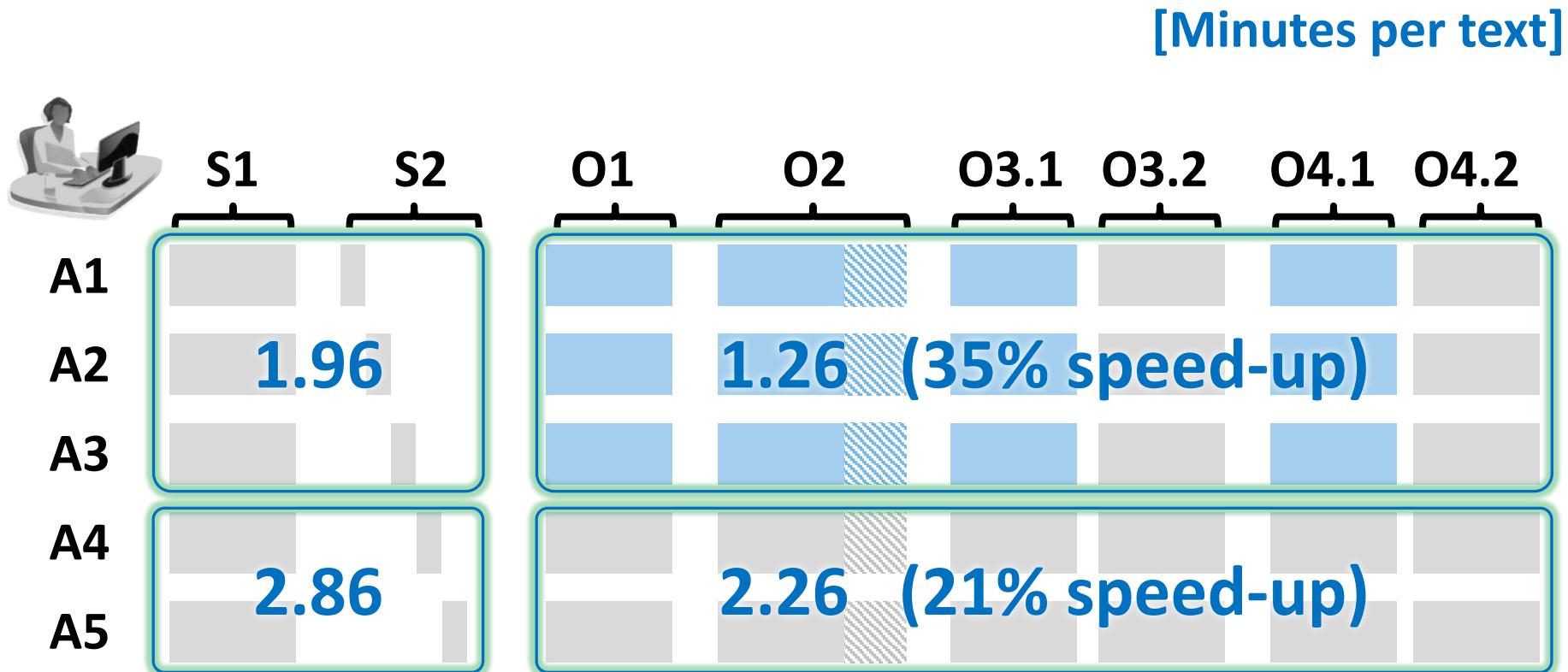
Alle

Evidenz

Typ EvidenzGener...

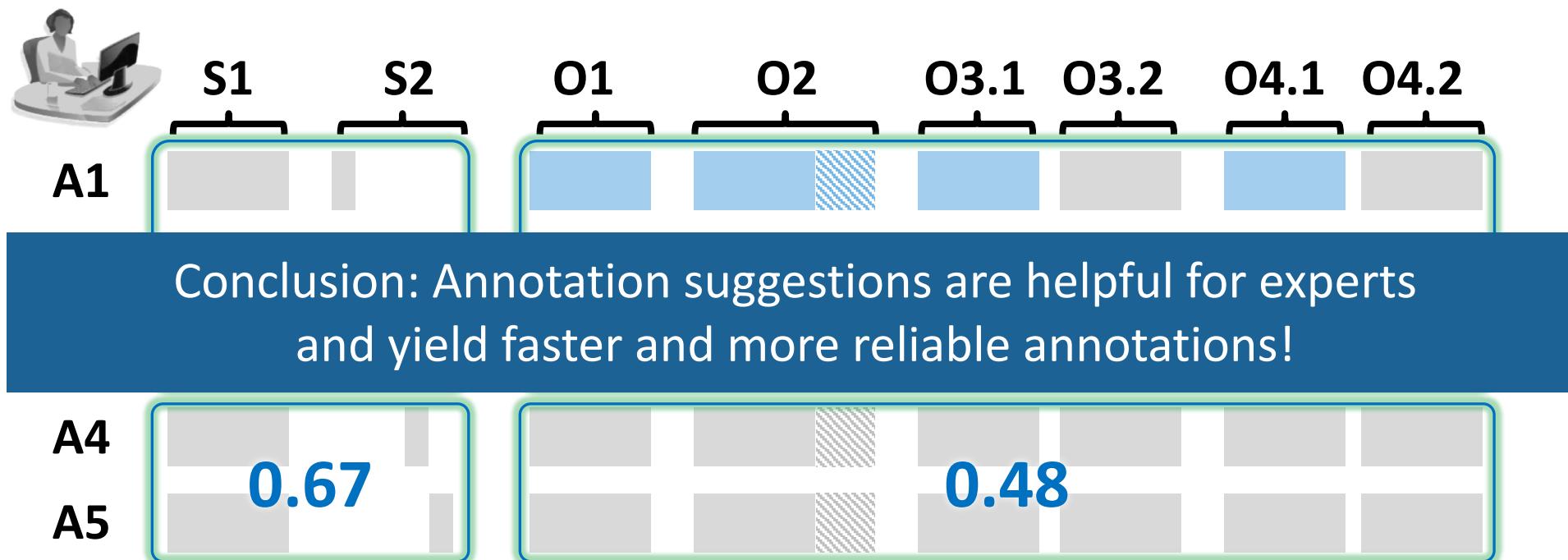
Annotation Suggestions - Setup



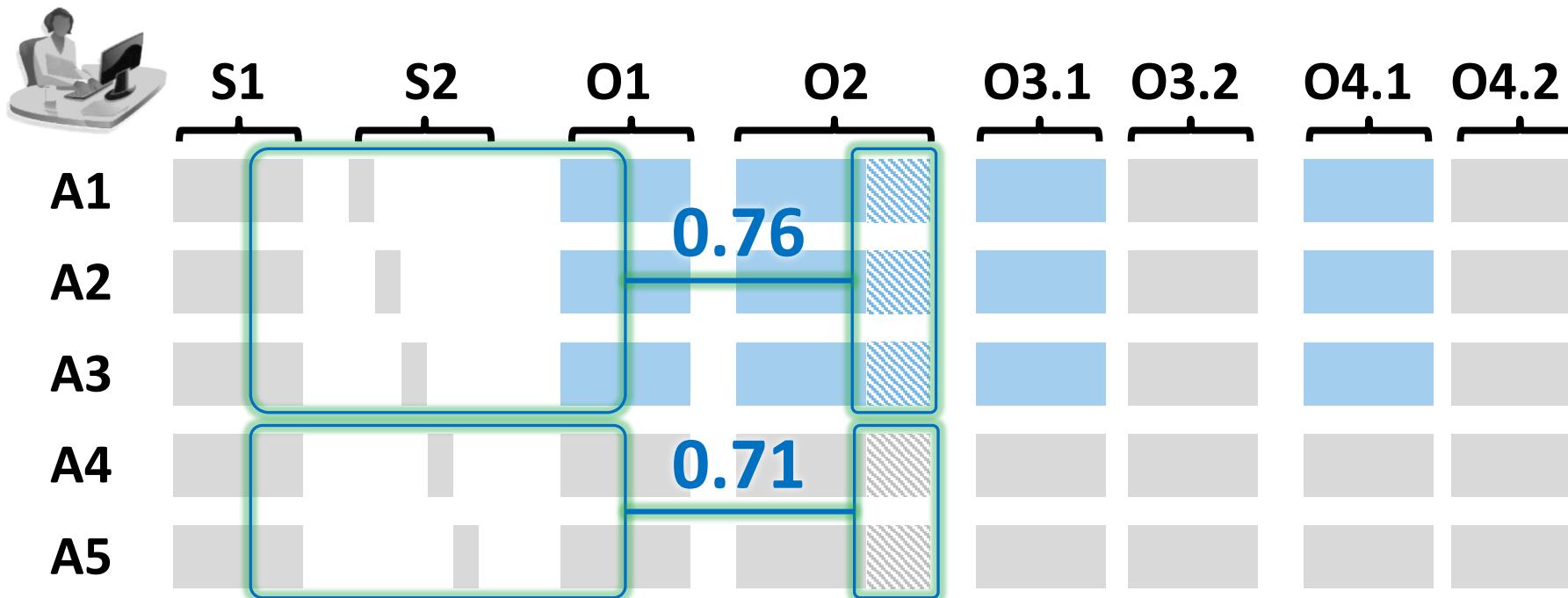

	S1	S2	O1	O2	O3.1	O3.2	O4.1	O4.2
A1								
A2								
A3								
A4								
A5								

Usefulness of Annotations

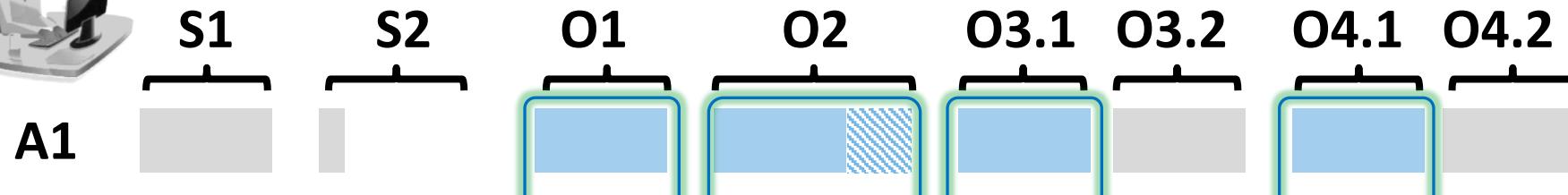
[Percentage of accepted suggestions]



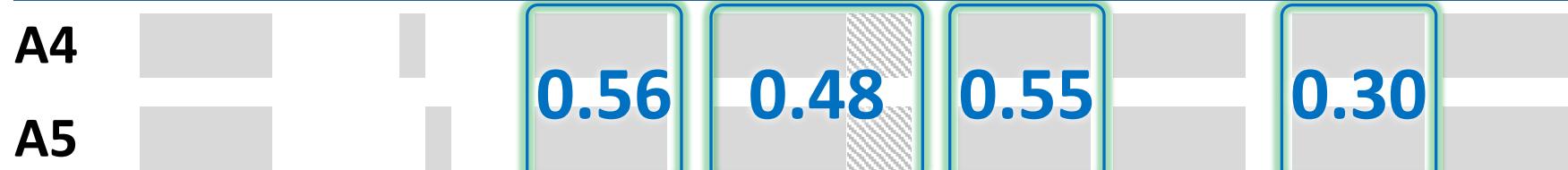
Annotation Time


Reliability of Annotations

[Krippendorff's α]


Intra-Annotator Consistency

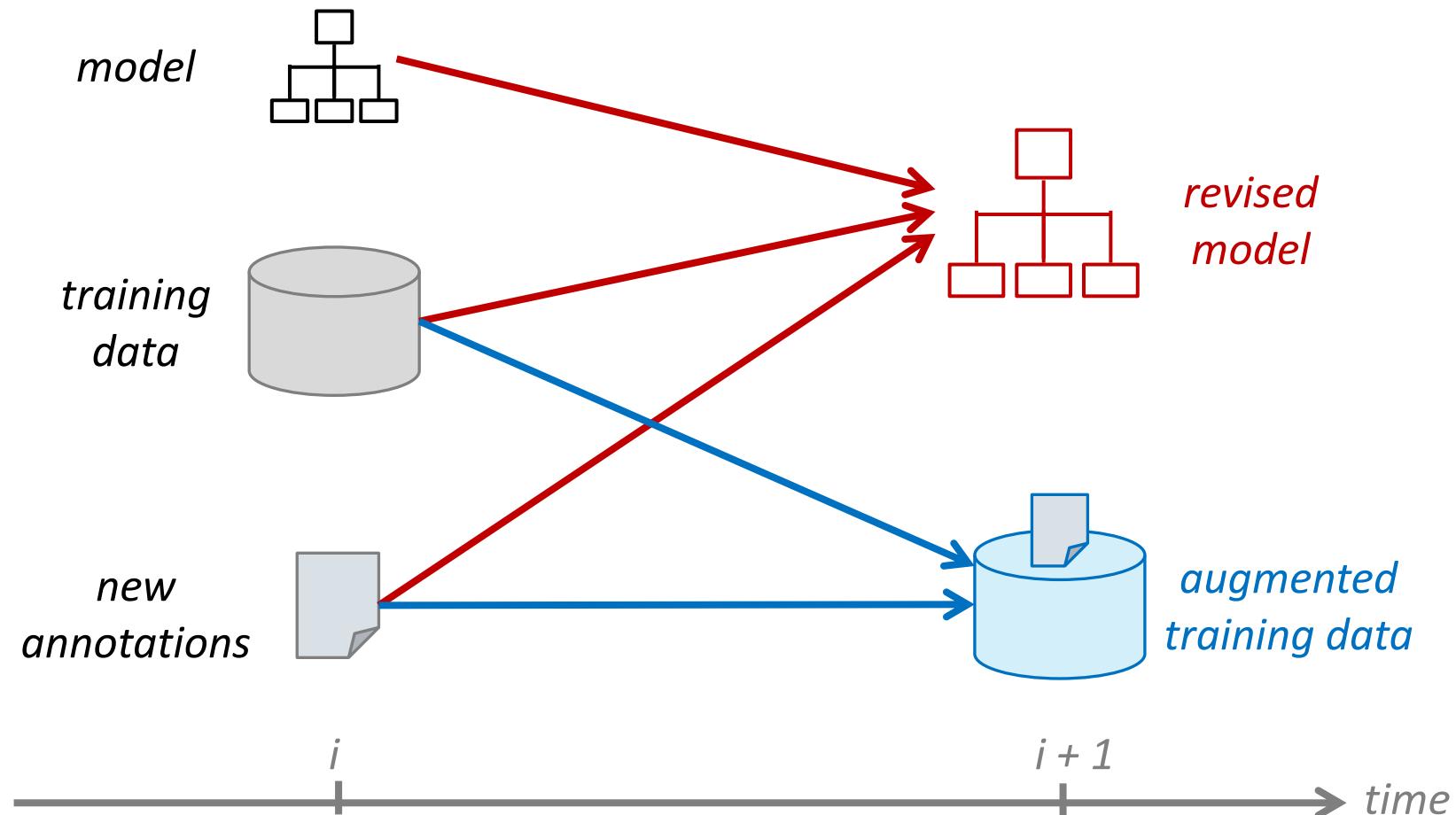
[Krippendorff's α]

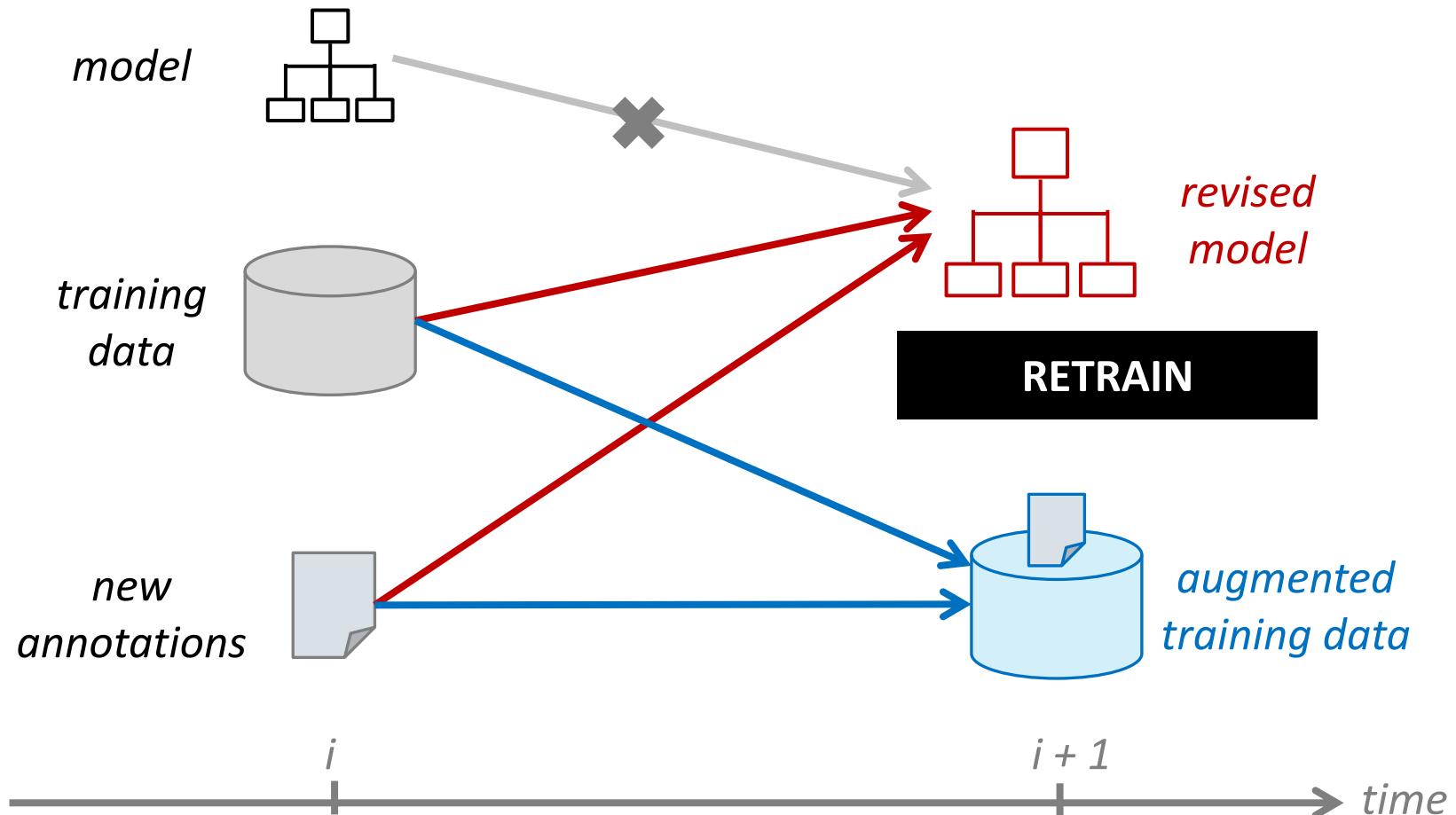


Human / Suggestion Model Agreement

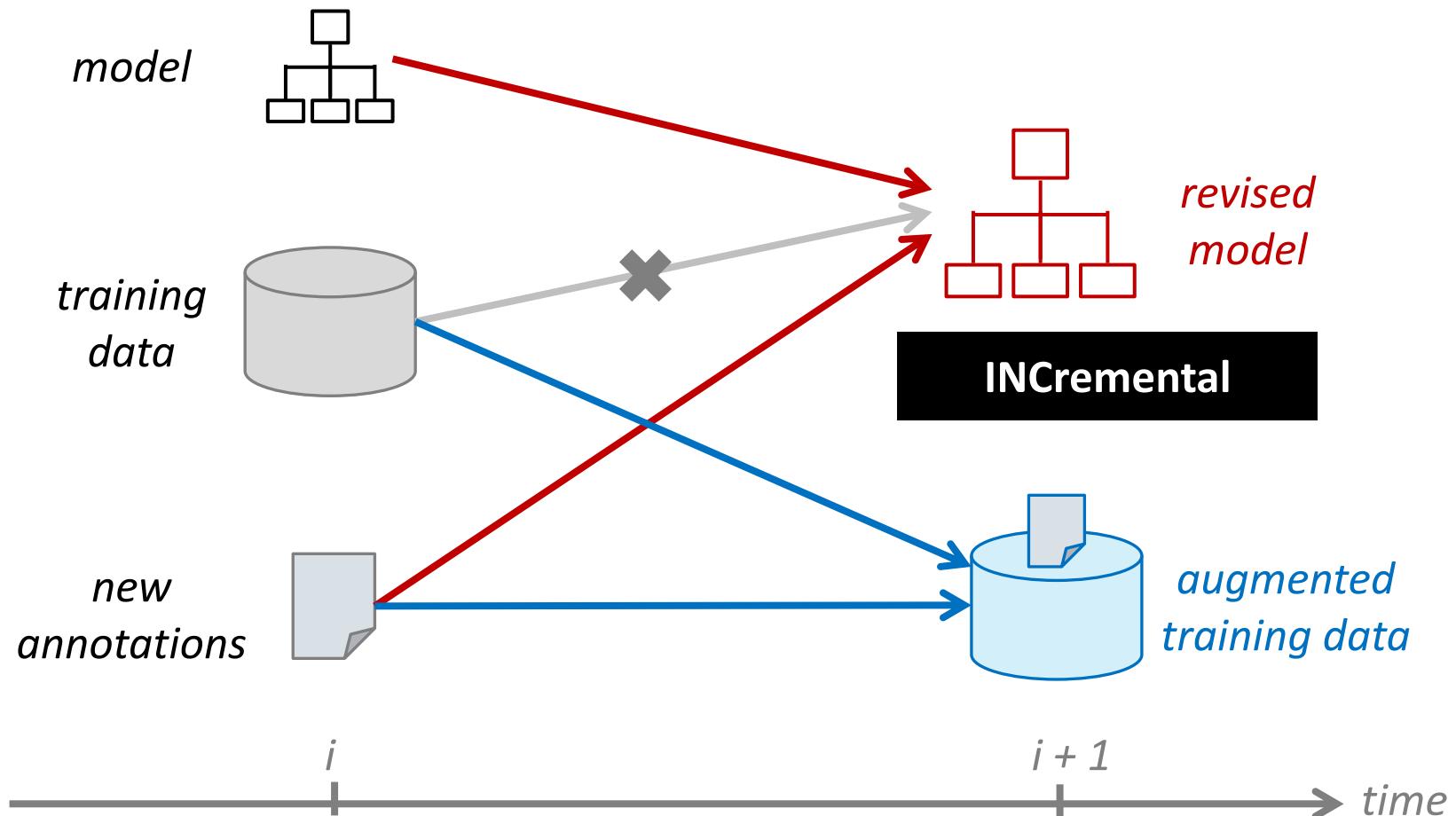
[Krippendorff's α]

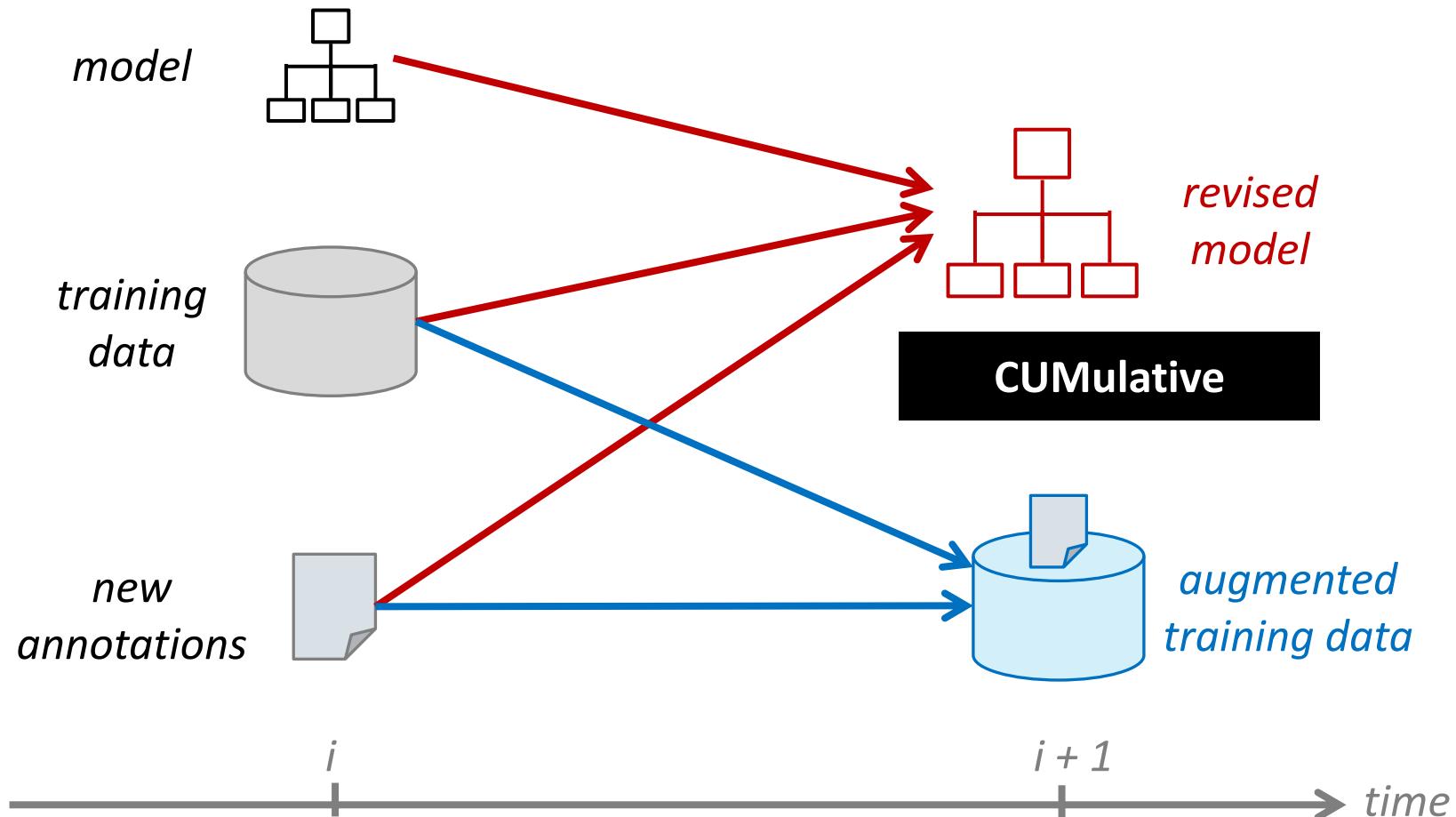
Conclusion: Some evidence for annotation bias, but negligible, as no systematic discrepancy compared to the control setup!

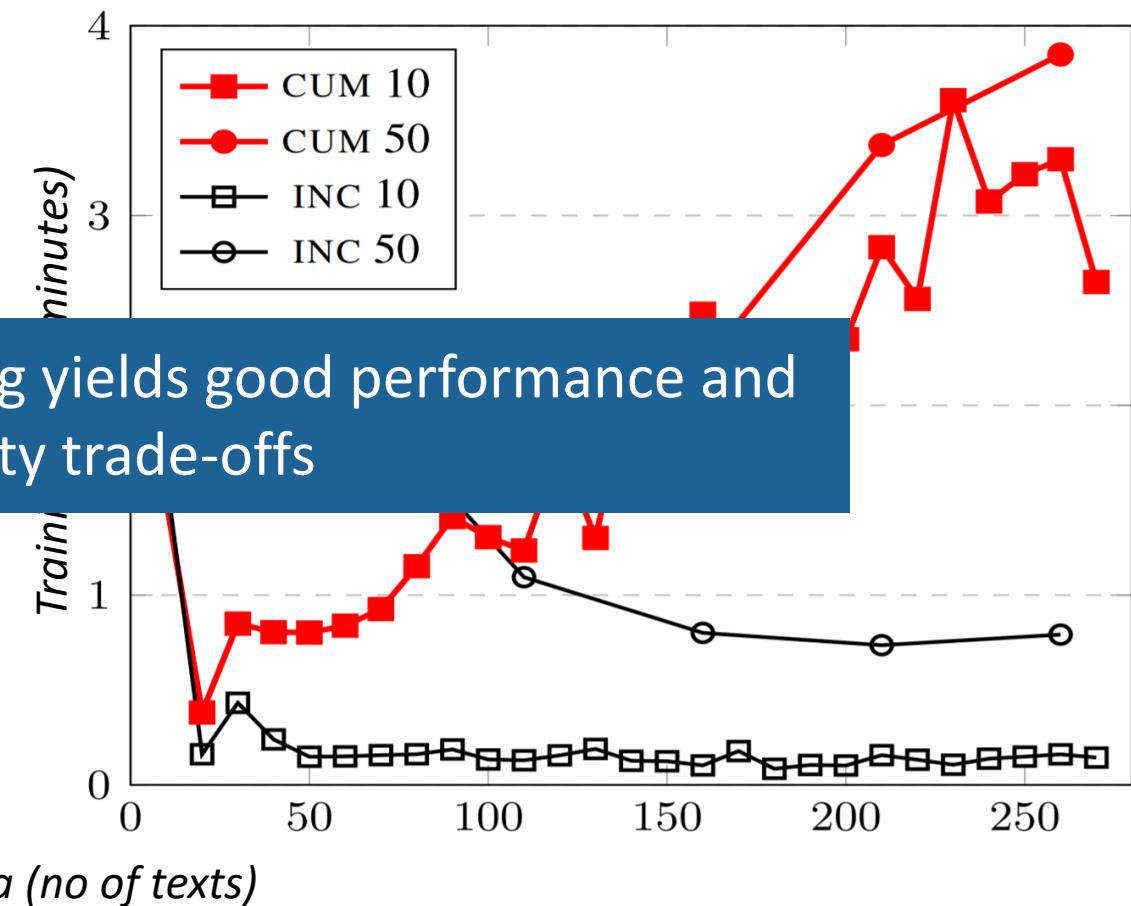
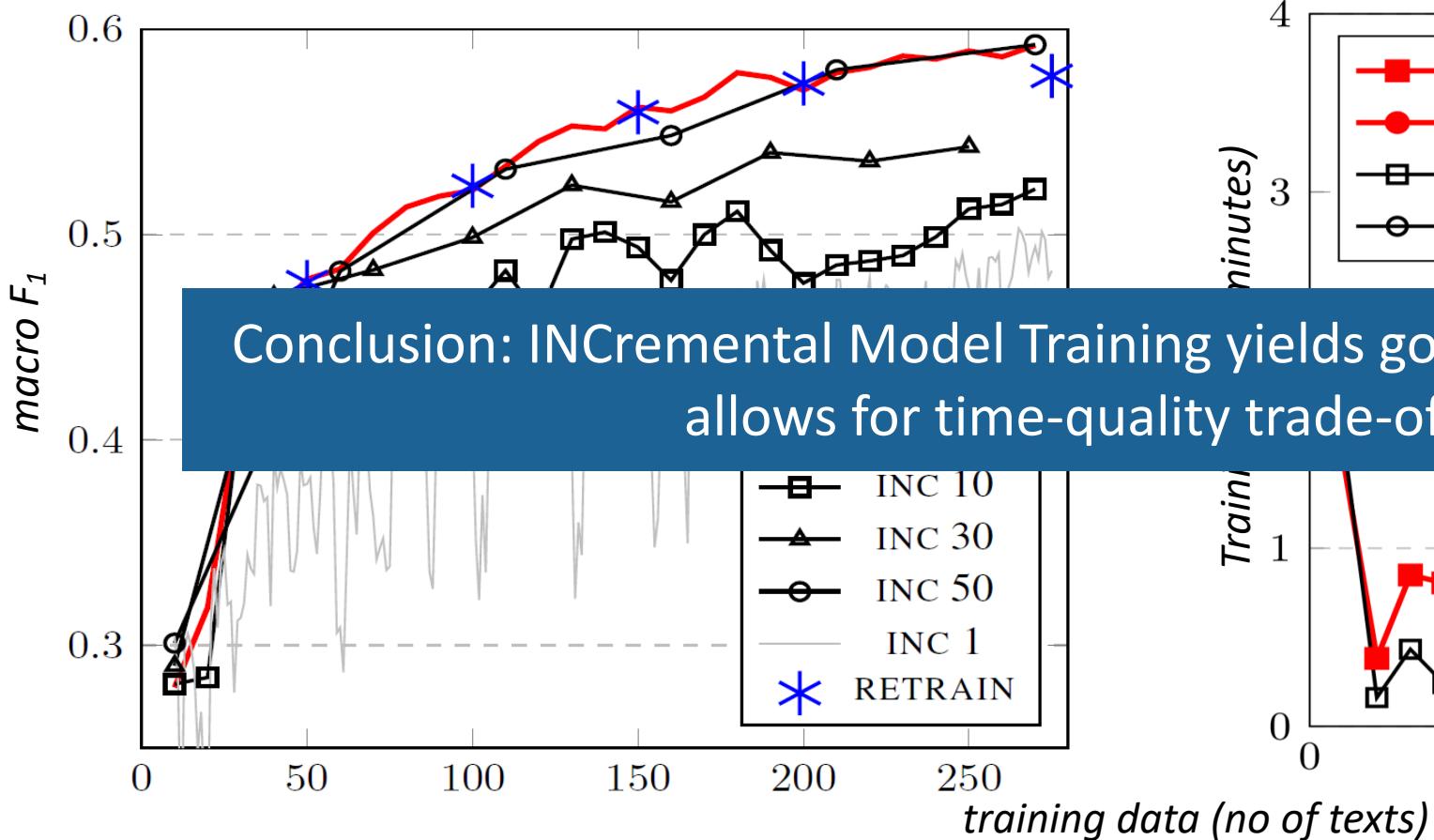

Iterative Model Training


Schulz, et al. "[Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains.](#)"

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019.


Iterative Model Training


Iterative Model Training



Iterative Model Training

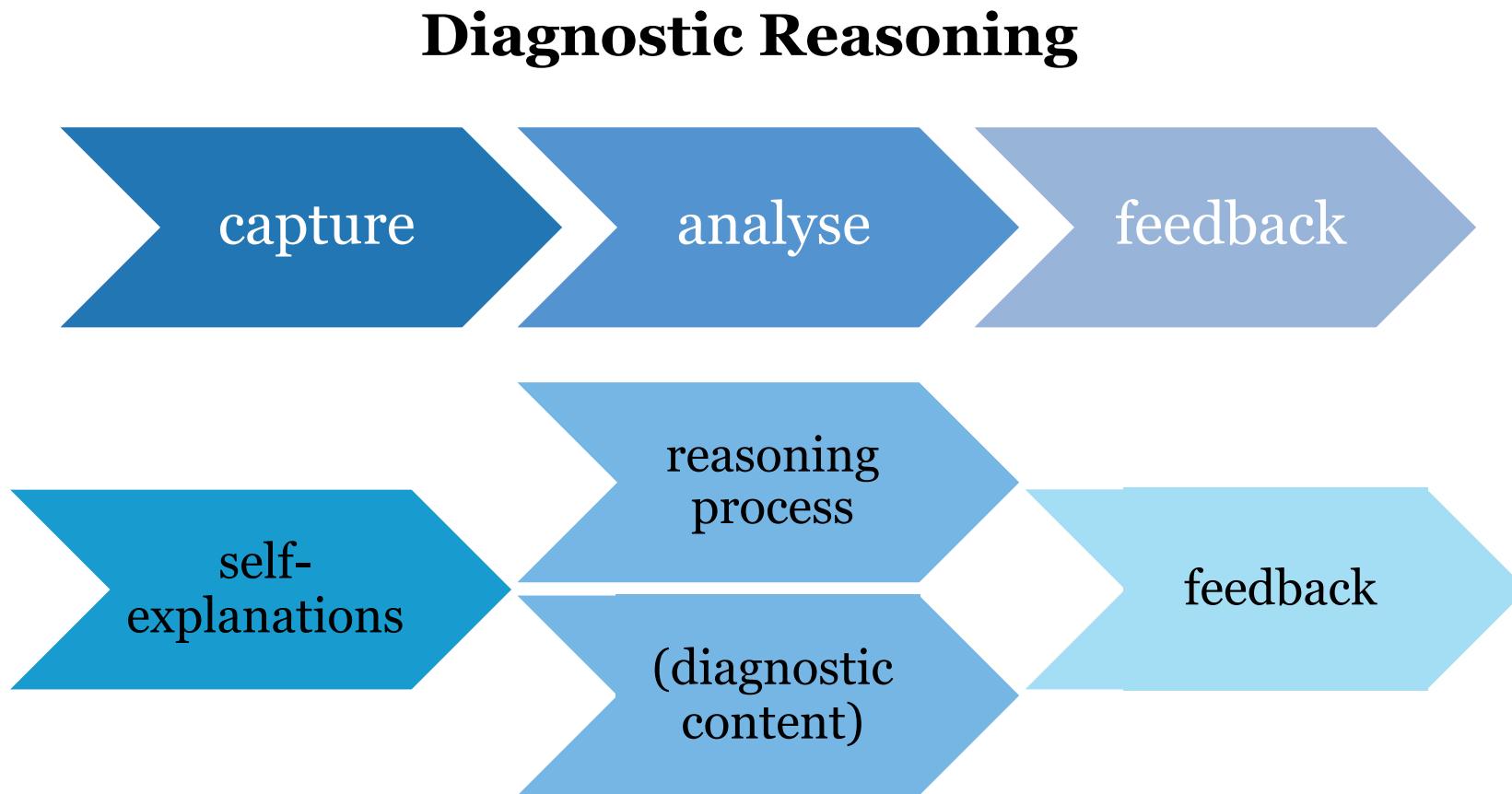
Iterative Model Training

Model Performance

Automatic Feedback on Diagnostic Reasoning

Detecting Diagnostic Reasoning Steps

- ✓ 1) Corpus Creation
- ✓ 2) Automatic Detection

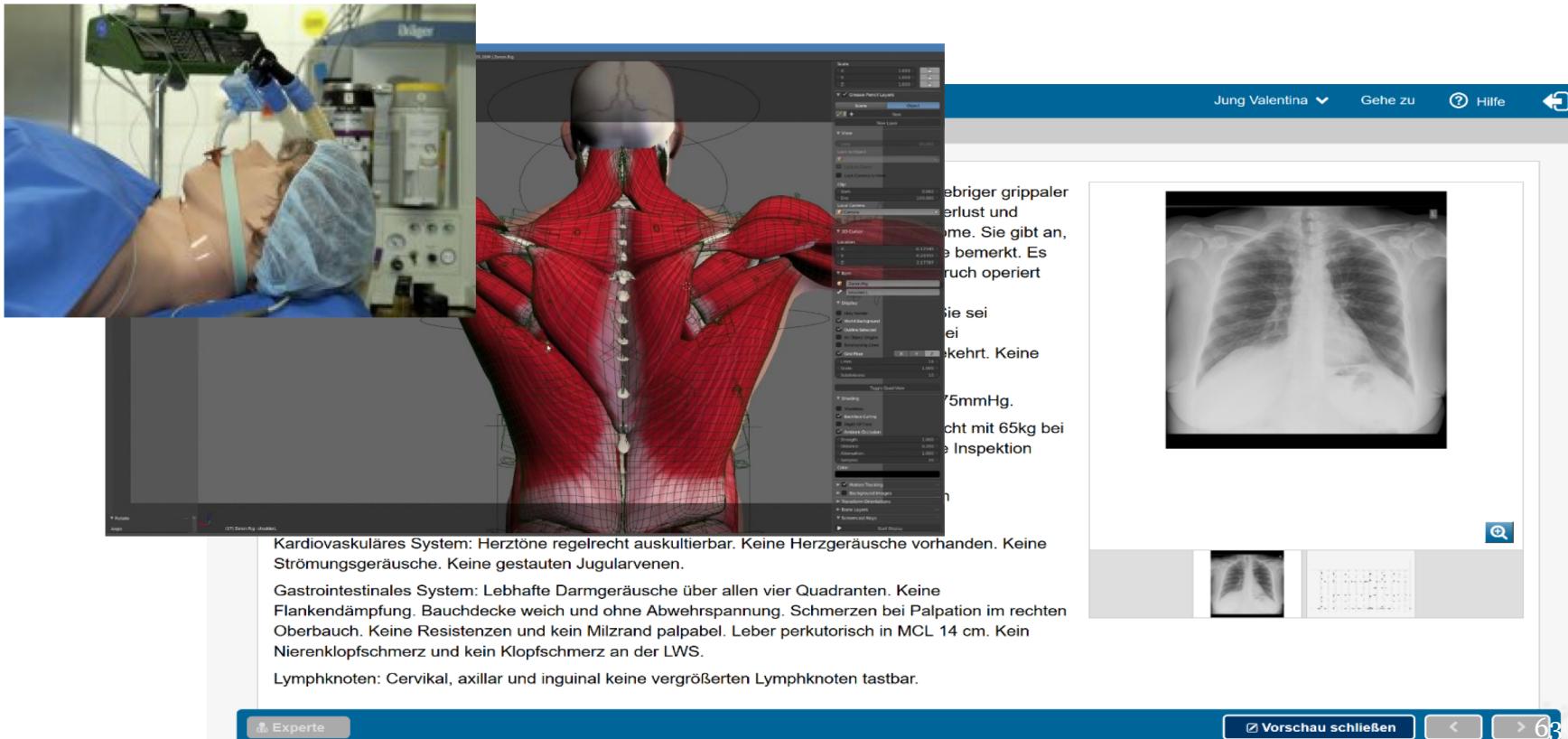

The patient reports to be lethargic and feverish. From the anamnesis I learned that he had purulent tonsilitis and is still suffering from symptoms. I first performed some laboratory tests and notice the decreased number of lymphocytes, which can be indicative of a bone marrow disease or an HIV infection. The HIV test is positive. However, the results from the blood cultures are negative, so it is a virus, parasite, or a fungal infection causing the symptoms.

Hypothesis Generation
Evidence Evaluation

Evidence Generation
Drawing Conclusions

Adaptive Feedback

eLearning Platform


CASUS®

The screenshot displays a multi-panel eLearning interface:

- Einleitung:** A brief introduction about a student named Tobias.
- Aufgabe:** A multiple choice question about possible diagnoses. The correct answer is marked with a checkmark: "Keine Störung oder".
- Elterngespräch:** A transcript of a parent-teacher conversation. The teacher asks about the student's behavior at home, and the parents respond that the student is doing well at home.
- Schülerarbeiten:** A transcript of a student's handwriting sample. The student writes: "Wir basteln einen Osterhasen", "Wir machen ein Schaf", "Wir schreiben 10 Stücke", "Wir gehen aber nicht", "Wir schreiben", "Wir gehen zu Hause", and "Wir ziehen das Schaf".
- Klassenarbeit - Rechtschreibung:** A handwriting assignment. The student writes: "Wir basteln einen Osterhasen", "Wir machen ein Schaf", "Wir schreiben 10 Stücke", "Wir gehen aber nicht", "Wir schreiben", "Wir gehen zu Hause", and "Wir ziehen das Schaf". The assignment includes a rubric for handwriting, spelling, punctuation, and grammar.

eLearning Platform

CASUS®

The image is a composite screenshot of a medical eLearning platform. On the left, a photograph shows a patient in an operating room, connected to a ventilator and monitoring equipment. In the center, a 3D anatomical model of the human torso is displayed, showing the musculature and internal organs. A text box below the model provides clinical notes: "Kardiovaskuläres System: Herztöne regelrecht auskultierbar. Keine Herzgeräusche vorhanden. Keine Strömungsgeräusche. Keine gestauten Jugularvenen." "Gastrointestinales System: Lebhafte Darmgeräusche über allen vier Quadranten. Keine Flankendämpfung. Bauchdecke weich und ohne Abwehrspannung. Schmerzen bei Palpation im rechten Oberbauch. Keine Resistenzen und kein Milzrand palpabel. Leber perkutorisch in MCL 14 cm. Kein Nierenklopfschmerz und kein Klopfschmerz an der LWS." "Lymphknoten: Cervikal, axillar und inguinal keine vergrößerten Lymphknoten tastbar." On the right, a chest X-ray image is shown within a web-based interface with a navigation bar at the top.

Kardiovaskuläres System: Herztöne regelrecht auskultierbar. Keine Herzgeräusche vorhanden. Keine Strömungsgeräusche. Keine gestauten Jugularvenen.

Gastrointestinales System: Lebhafte Darmgeräusche über allen vier Quadranten. Keine Flankendämpfung. Bauchdecke weich und ohne Abwehrspannung. Schmerzen bei Palpation im rechten Oberbauch. Keine Resistenzen und kein Milzrand palpabel. Leber perkutorisch in MCL 14 cm. Kein Nierenklopfschmerz und kein Klopfschmerz an der LWS.

Lymphknoten: Cervikal, axillar und inguinal keine vergrößerten Lymphknoten tastbar.

Experte

Vorschau schließen

63

Automatic Feedback

student's self-explanation

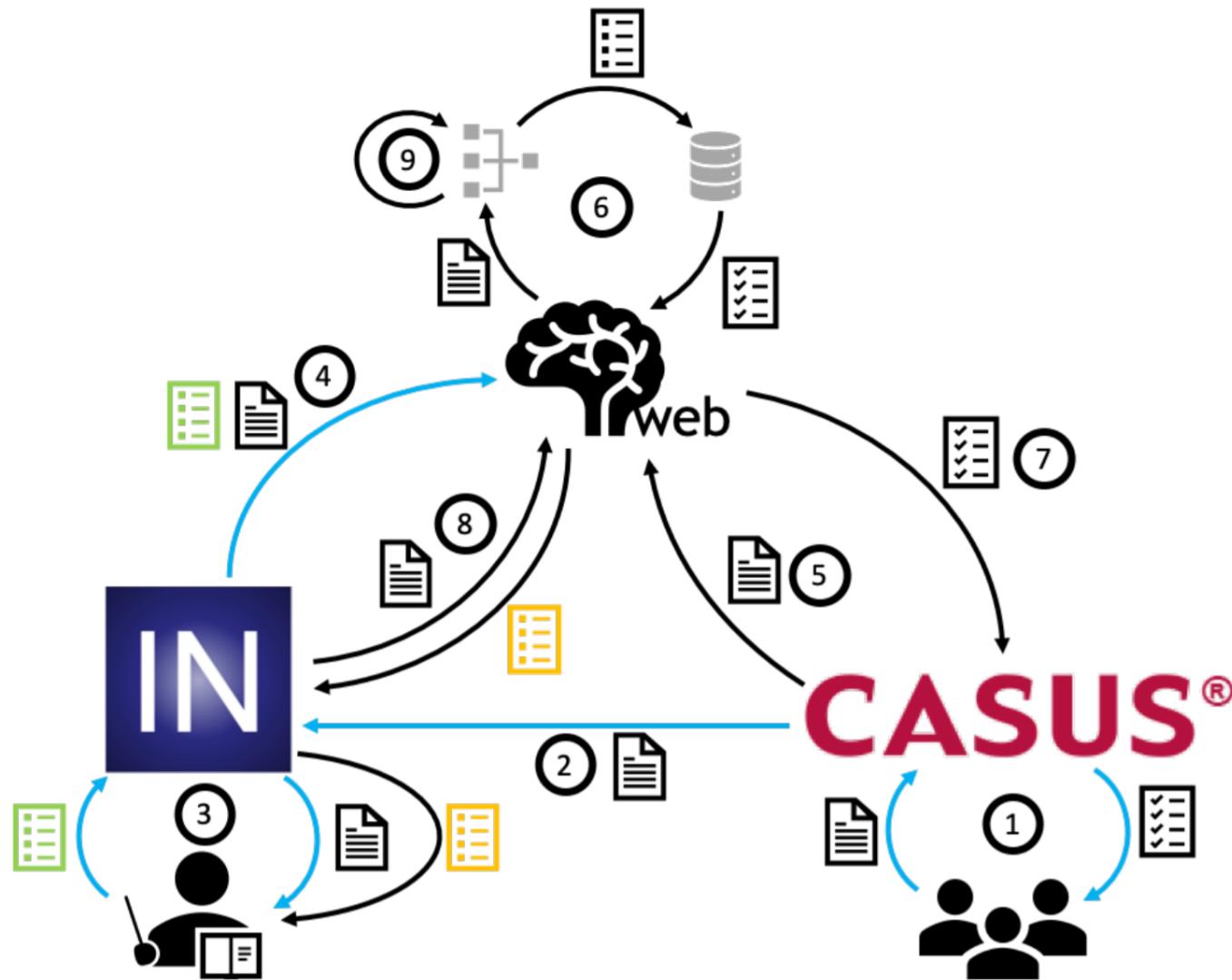
Textaufgabe

Die körperliche Untersuchung war unauffällig. Allerdings waren im Labor die Entzündungswerte und Leberwerte auffällig. Der dicke Tropfen war negativ, daher war **Malaria** als Diagnose ausgeschlossen. Die Hepatitis Serologie war positiv und damit die Diagnose gesichert.

Vielen Dank für Ihre Antwort!

Fallübersicht

Die 36-jährige Frau Hoffmann stellt sich vor, mit einem seit einer Woche bestehenden grippalen Infekt. Als zusätzliche Symptome gibt sie Abgeschlagenheit, Appetitverlust, Übelkeit und Diarrhoe an. Sie war vor einem Monat ins Sansibar, vor der Reise wurde eine Gelbfieberimpfung durchgeführt.


Rückmeldung zu Differentialdiagnose

Bei einem einwöchigen grippalen Infekt mit Gliederschmerzen und Abgeschlagenheit wäre zunächst eine Influenza-Infektion denkbar gewesen. Für einen grippalen Infekt ist die Symptomatik allerdings zu langanhaltend, da dieser meist nach 3 Tagen abklingt.

Bei einer Diarrhoe hättest du auch eine Darmerkrankung, wie die Gastroenteritis, vermuten sollen.

Nicht schlecht, dass du eine Tropenkrankheit differentialdiagnostisch in Betracht gezogen hast. Möglich wären zB. Malaria, Dengue Fieber, Cholera etc.

automatic adaptive feedback

Wrapping Up

Explaining how to improve Diagnostic Reasoning

- Collect Self-Explanations
- Annotate Diagnostic Reasoning Steps
 - Train model for annotation suggestions → ease and speed-up
- Train Model for Detecting Reasoning Steps
- Use Model for Automatic Feedback

My publications

<http://www.famulus-project.de/>
<https://inception-project.github.io/>

For more questions, contact me:
clauschulz1812@gmail.com