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Interactive model analysis, the process of understanding, diagnosing, and refin-

ing a machine learning model with the help of interactive visualization, is very

| 4F

Abstract important for users to efficiently solve real-world artificial intelligence and data
Visual analytics systems combine machine learning or other analytic technigues with interactive data visuvalization
to promote sensemaking and analytical reasoning. It iz through such fechnigues that people can make sense of large,
compler data. While progress has been made, the tactful combination of machine learning and data visualization
is atill under-explored. This s o-of-the-art report presents a summary of the progress that has been made by
Righlighting and synthesizing select research advances. Further, it presents opportunities and challenges to enhance

J

mining problems. Dramatic advances in big data analytics has led to a wide

variety of interactive model analysis tasks. In this paper. we present a compre-

hensive analysis and interpretation of this rapidly developing area. Specifically,
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the synergy between machine learning and wvisual analytics for impactful future research directions.

Categories and Subject Descriptors (according to ACM CCS): Human-centered computing - Visnalization, Visual

analytics

L. Introduction

We are in a data-driven era. Increasingly more domains
generate and consume data. People have the potential to un-
derstand phenomena in more depth using new data analysis
techmiques. Additionally, new phenomena can be uncovered
in domains where data i becoming available. Thus, making
sense of data is becoming increasingly important, and thi
driving the need for systems that enable people to analyze
and understand data.

However, this opportunity to discover also presents chal-
lenges. Reasoning about data is becoming more complicated
and difficult as data scales and complexities increase. People
require powerful tools to draw valid conclusions from data,
while maintaining trustworthy and interpretable results.

‘We claim that visual analytics (VA) and m ne learn-
ing (ML)} have complementing strengths and weaknesses
to address these challenges. Visual analytics (VA) is a
multi-disciplinary domain that combines data visualization
with machine learning (ML) and other automated tech-
niques to create systems that help people make sense of
data [TC0G, KSF™08, K KMSZ06]. Over the years, much
work has been done to establish the foundations of this area,

submitted ta COMPUTER GRAPHICS 018}

create research advances in select topics, and form a com-
munity of researchers to continue to evolve the state of the
art.

Currently, VA technigues exist that make use of select
ML models or algorithms. However, there are additional
technigques that can apply to the broader visnal data anal
process. Doing so reveals opportunities for how to conple user
tasks and activities with such models. Similarly, opportunities
exist to advar ML muodels based on the cognitive tasks
invoked by interactive VA techniques.

T atate-of-the-art report briefly summarizes the ad-
vances made at the intersection of ML and VA. It describes
the extent to which machine learning methods are utilized in
visnal analvtics to date. Further, it illnminates the opportuni-
ties within hoth disciplines that can drive important research
directions in the futwre. Much of the content and inspiration

paper originated during a Dagst Seminar titled,
ng Machine Learning with Information Visualization
(15101)" [KMRV15].
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we classify the relevant work into three categories: understanding, diagnos
and refinement. Each category is exemplified by recent influential work. Possi-
ble future research opportunities are also explored and discussed.

Keywords: interactive model analysis, interactive visualization, machine

learning. understanding, diagnosis. refinement

1. Introduction

Machine learning has been successfully applied to a wide variety of fields
ranging from information retrieval, data mining, and speech recognition, to
computer graphics, visualization, and human-computer interaction. However,
most users often treat a machine learning model as a black box because of its
incomprehensible functions and unclear working mechanism (1, . Without
a clear understanding of how and why a model works, the development of high-

performance models typically relies on a time-consuming trial-and-error pro-

Fully documented templates are available in the elsarticle package on CTAN.

Preprint submitted to Journal of IATEX Templates February 7, 2017
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Visual Analytics in Deep Learning:
An Interrogative Survey for the Next Frontiers

Fred Hohman, Member, IEEE, Minsuk Kahng, Member, IEEE, Robert Pienta, Member, [EEE,
and Duen Horng Chau, Member, [EEE

Abstract—Deep Iearmng has recently seen rapid development and received significant attention due fo its state-of-the-art

pe onp ly-theught hard p However, because af the internal complexity and nonlinear structure of deep neural
networks, the underlying :Iausmn maklng processes for why these models are achieving such performance are challenging and
sometimes mystifying to interpret. As deep learning spreads across domains, it is of paramount importance that we equip users of
deep learning with tools for understanding when a madel warks carrectly, when it fails, and ulimately how to improve its performance.
Standardized loolkils for building neural networks have helped democratize deep learning; visual analylics systems have now been
developed to support model explanation, interpretation, debugging, and improvernent. We present a survey of the rale of visual
analytics in deep learning research, which highlights its short yel impactful history and tharoughly summarizes the state-of-the-art
using & human-centered intarrogative framewark, focusing on the Five Ws and How (Why, Wha, What, How, When, and Where). We
conclude by highlighting research directions and open research problems. This survey helps researchers and practitioners in both
visual analytics and deep learning to quickly learn key aspects of this young and rapidly growing body of research, whose impact spans
a diverse range of domains.

Index Terms—Deap learning, visual analytics, information visualization, neural netwarks
+

INTRODUCTION

DEEP learning is a specific set of techniques from the
broader field of machine learning (ML) that focus on
the study and usage of deep artificial neural networks to
learn structured representations of data. First mentioned
as early as the 1940s [1], artificial neural networks have
a rich history [2], and have recently seen a dominate and
pervasive resurgence [3], [4], [5] in many research domains
by producing state-of-the-art results [6], [7] on a number of
diverse big data tasks [8], [9]. For example, the premiere ma-
chine learning, deep learning, and artificial intelligence (Al)
conferences have seen enormous growth in attendance and
paper submissions since early 2010s. Furthermore, open-
source toolkits and programming libraries for building,
training, and evaluating deep neural networks have become

While explaining neural network decisions is important,
there are numerous other problems that arise from deep
learning, such as Al safety and security (e.g., when using
models in applications such as self-driving vehicles), and
compromised trust due to bias in models and datasets, just
to name a few. These challenges are often compounded, due
to the large datasets required to train most deep learning
models. As worrisome as these problems are, they will
likely become even more widespread as more Al-powered
systems are deployed in the world. Therefore, a general
sense of model understanding is not only beneficial, but
often required to address the aforementioned issues.

Data visualization and visual analytics excel at knowl-
edge communication and insight discovery by using encod-

more robust and easy to use, d izing deep 1 ing,
As a result, the barrier to developing deep lcamm;, models
is lower than ever before and deep learning applications are
becoming pervasive.

While this technological progress is impressive, it comes
with unique and novel challenges. For example, the lack
of interpretability and transparency of neural networks,
from the learned representations to the underlying decision
process, is an important problem to address. Making sense
of why a particular model misclassifies test data instances
or behaves poorly at times is a challenging task for model
developers. Similarly, end-users interacting with an applica-
tion that relies on deep learning to make critical decisions
may question its reliability if no explanation is given by the
model, or become baffled if the explanation is convoluted.

= F Holuman, M. Kalng, R. Pienta, and D. H. Chau are with the College of
Computing, Georgia Tech, Atlanta, Georgia 30332, LLS.A.
E-mail: {fredhofiman, kahng, pienlars, polo }@gatech edu

ings to fi L data into meaningful represen-
tations. In the seminal work by Zeiler and Fergus [10], a
technique called deconvolutional networks enabled projection
from a model’s learned feature space back to the pixel space.
Their technique and results give insight into what types
of features deep neural networks are leamning at specific
layers, and also serve as a debugging tool for improving
a model. This work is often credited for popularizing vi-
sualization in the machine learning and computer vision
communities in recent years, putting a spotlight on it as
a powerful tool that helps people undcrqland and improve
deep 1 ing models. H ion research for
neural networks started well bcfnn: [11], [12], [13]. Over
just a handful of years, many different techniques have
been introduced to help interpret what neural networks are
learning. Many such techniques generate static images, such
as ion maps and | for image classification,
indicating which parts of an image are most important
to the classification. However, interaction has also been

arXiv:1908.00087v2 [¢s.HC] 7 Oct 2019

(@ 209 IEEE. This is the author's version of the article that has been published in IEEE Transactions on Visualization and
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explAlner: A Visual Analytics Framework
for Interactive and Explainable Machine Learning

Thilo Spinner, Ude Schlegel, Hanna Schéfer, and Mennatallah El-Assady
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Fig. I: Close-up view of an explainer, the main building-block used to construct an iterative XAl pipeline for the understanding,
diagnosis, and refinement of ML models. Explainers have five properties; they take one or more model states as input, applying an
XAl method, to :Julput an explanation or a transition function. Global monitoring and steering mechanisms expand the pipeline to
the full XAF fr the overall workflow by guiding, steering, or tracking the explainers during all steps.

Abstract— We propose a framewoark for interactive and explainable machine leaming that enables users to (1) understand machine
learning models; (2) diagnose model limitations using different axp\alnabla Al methods; as well as (3) refine and optimize the models.

Our framewerk combines an iterative XAl pipeline with eight global ing and steering including quality menitering,

pravenance tracking, model comparison, and trust building. To we present expl , a visual analytics
system for interactive and explainable machine leaming that instantiates al phases of the suggested pipeline within the commonly
used TensorBoard environment. We performed a user-study with nine participants across different expertise levels to examine their
perception of our workflow and to collect suggestions to fill the gap between our system and framework. The evaluation confirms that

aur tightly integrated system leads to an informed machine learning process while disclosing opportunities for further extensions.
Index Terms—Explzainable Al, Interactive Machine Learning, Deep Learning, Visual Analytics, Interpretability, Explainability
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1 INTRODUCTION

Since the first presentation of neural networks in the 19405 [47], we
have seen a great increase in works on Artificial Intelligence (Al) and
Machine Leaming (ML). Especially within the last decade. computa-
tional resources have become cheaper and more accessible. This de-
velopment has led to new state-of-the-art solutions, e.g., Deep Learn-
ing (DL). while the increasing availability of tools and libraries has
led to a democratization of ML methods in a variety of domains [30]
For example, DL methods outperform traditional algorithms for im-
age processing [56] or natural language processing [82] and can often
be applied by domain experts without prior ML expertise [12].
Despite the significant improvement in performance, DL models
create novel challenges, due o their nature of bcm;, Ilack- .bo\ﬂ [78|
For model devel ing v in the decis
of DL mnd:k often leads to a time-consuming trial and error pro-

cess [81]. Ad b such decisions concem end-user ap-
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plications, c.g.. sclf-driving cars, trust is essential. In critical domains,
this trust has to be substantiated either by reliable and unbiased de-
cislon outcomes, or convineing rationalization and justifications [66].
The growing prevalence of Al in security-critical domains leads to an

ever-increasing demand for explainable and reproducible results.

Several solutions address the problem of missing transparency
in black-box modcls. often referred to as cXplainable Artificial
Intelligence (XAI) [26]. Even though Al algorithms ofien cannot be
directly explained [2], XAl methods aim to provide human-readable,
as well as interpretable explanations of the decisions taken by such al-
gorithms. XAl is further driven by newly introduced regulations. such
as the Ewropean General Data Protection Regulation [77], demand-
ing accessible justifications for automated, consumer-facing decisions,
prompting businesses to seck reliable XAl solutions. A natum] way to

obtain human interpretable is through vi

More recent work focuses not only on visual design but also on in-
. mixed-i lmlml\r workflows. as provided by Visual Analyt-
sys 21). Also, an exploratory workflow [60] enables a
more |.|r§; nalysis and design of ML modcls. Visual anal;
ther helps in bridging the gap between user knowledge and the i
XAl methods can provide. As Al is affecting a broader range of user
groups, ranging from everyday users to model developers, the differ-
ing levels of background knowledge in these user groups bring along
varying requirements for the cxplainability.




Visual Analytics in Deep Learning | Interrogative Survey Overview

WHY
Why would one want to use
visualization in deep learning?
Interpretability & Explainability
Debugging & improving Models
Comparing & Selacting Models
Teaching Deap Leaming Concepts

Q.

B WHO
Who would use and benefit
from visualizing deep learning?
Model Developers & Builders
Model Users
Non-experts

[ WHAT

What data, features, and relationships

in deep learning can be visualized?

Computational Graph & Network Architecture

Leamed Model Parameters

individual Computational Units
Neurons In High-dimensional Space
Aggregated Information

@ How

How can we visualize deep learning
data, features, and relationships?

Node-link Diagrams for Network Architecture
Dimensionality Reduction & Scatter

Line Charts for Temporal Metrics

Plots

Instance-based Analysis & Exploration

Interactive Experimentation

Algorithms for Attribution & Feature Visualization

) WHEN

When in the deep learning
process is visualization used?
During Training

After Training

A
ey

A\l g

) WHERE

Where has deep leaming
visualization been used?
Application Domains & Models
A Vibrant Research Community

F. Hohman, M. Kahng, R. Pienta, and D. Chau. Visual Analytics in Deep Learning: An
Interrogative Survey for the Next Frontiers. IEEE Trans. Vis. Comput. Graph., 2018.
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The Newcomer.

E The -*'c:d-e

goal is fo learn about concepts of machine
ding blocks of the model as well as its genera

novice is the ‘new one’ in the machine-learning class. His

earning models; he wants

~ to understand the bui
~—— working. Learning resources are essential to him, either by example or

oy textual, visual, or external resources

Model Novice

The Operator.

He is the ‘user’ among the users, ie, he uses existing machine learning

ks. For example, this could be a domain

models to solve specific tas
expert - let's say a bio ogist - who needs fo ¢ c:ssi’r'a,- protein structures
To decide on a model, he wants fo compare architectures, understand
their underlying warking, and verify his decision by executing XAl

Model User
methods on some data samples

The Expert.
. The model developer is an expert on machine learning. He develops
models from scrateh, refines ex sting models, and optimizes parameters

to improve the model’s performance He is interested in the
architecture of the model, in::|u:Ji-'g in-:Jep'-'u nformation, such as

Model DEVE'OPEF ayer-sizes, initializers, and activation functions. To debug the model,

explanations on all abstraction levels are relevant. His insights might
update, covering the full development and refinement

ead to o mode

Process



Towards Better Analysis of Machine Learning Models:
A Visual Analytics Perspective

Shixia Lin, Xiting Wang, Mengehen Lin, Jun Zhu

Tsinghua University, Beging, China

Abstract

Interactive model analysis, the process of understanding, diagnosing, and refin-
ing a machine learning model with the help of interactive visunalization, is very
important for nsers to efficiently solve real-world artificial intelligenee and data
mining problems. Dramatic advances in big data analyties has led to a wide
variety of interactive model analysis tasks. In this paper, we present a compre-
hensive analysis and interpretation of this rapidly developing area. Specifically,
we clazzify the relevant work into three categories: understanding, diagnosis,
and refinement. Each category is exemplified by recent influential work. Possi-
ble future research opportunities are also explored and discussed.

Keywords:  interactive model analysis, interactive visualization, machine

learning, understanding, diagnosis, refinement
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explAlner: A Visual Analytics Framework
for Interactive and Explainable Machine Learning

Thilo Spinner, Udo Schlegel, Hanna Schafer, and Mennatallah El-Assady
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Fig. 1: Close-up view of an explainer, the main building-block used wo construct an iterative XAl pipeline for the understanding,
diagnosis, and refinement of ML models. Explainers have five properties; they take one or more model states as input, applying an
XAl method, to output an explanation or a transition function. Global monitoring and steering mechanisms expand the pipeline to
the full XA[ framework, supporting the overall workflow by guiding, steering, or tracking the expluiners during all steps.

Abstract— We propose a framework for interactive and explainable machine leaming that enables users to (1) understand maching
learning modals; (2] diagnose modeal limitations using different explainabla Al methods; as well as (3) refine and optimize the models.
Our frameawork combines an ilerative XAl pipsline with eight global monitoring and steering mechanisms, including quality monitoring,
provanance fracking, model comparison, and trust building. To operationalize the framewark, we present explAlner, a visual analytics
system for interactive and explainable machine leaming that instantiates all phasas of the suggested pipsling within the commonly
used TensorBoard environment. We perormed a user-study with ning participants across different expertise levels to axamine their
perception of cur workflow and to collect suggestions 1o fill the gap between our system and framework. The avaluation confirms that
aur tightly integrated system |sads to an informed maching learning process while disclosing opportunities for furthar extensions.

Index Terms—Explainable Al, Interactive Machina Learning, Deep Learning, Visual Analytics, Interpretability, Explainability
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Justification

The Process of Interactive and Explainable Machine Learning

Justification

Refinement



Understanding



Do Convolutional Neural Networks Learn Class Hierarchy?

Bilal Alsallakh, Amin Jourabloo, Mao Ye, Xiaoming Liu, Liu Ren
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Fig. 1. The user interface of
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ThreadReconstructor: Modeling Reply-Chains

Mennatallah El-Assady’-*, Rita Sevastjanova,

University of Konsl
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We present ThreadReconstructor, a visual analviics approach for de
- discussions, e.g.. in political debates and forums. Qur work is ma

in mussive online conversations and verbatim fext transcripts. W
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to Untangle Conversational Text through Visual Analytics

RuleMatrix: Visualizing and Understanding Classifiers with Rules

Yao Ming, Huamin Qu, Member, IEEE, and Enrico Bertini, Member, IEEE
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Fig. 1. Understanding the behavior of a trained neural network using the explanatory visual interface of our proposed technique. The
user uses the control panel (A) to specify the detail information to visualize (e.g., level of detail, rule filters). The rule-based explanatory
representation is visualized as a matrix (B), where each row represents a rule, and each column is a feature used in the rules. The
user can also filter the data or use a customized input in the data filter (C) and navigate the filtered dataset in the data table (D).

Abstract—With the growing adoption of machine learning techniques, there is a surge of research interest towards making machine
learning systems more transparent and interpretable. Various visualizations have been developed to help model developers understand,
diagnose, and refine machine learning models. However, a large number of potential but neglected users are the domain experts with
little knowledge of machine learning but are expected to work with machine learning systems. In this paper, we present an interactive



Visualizing the Hidden Activity of Artificial Neural Networks

Paulo E. Rauber, Samuel G. Fadel, Alexandre X. Falcio, and Alexandru C. Telea
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1 INTRODUCTION

In machine leaming, advances in
building and training {deep) arti
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GAN Lab: Understanding Complex Deep Generative Models using

Interactive Visual Experimentation

Minsuk Kahng, Nikhil Thorat, Duen Horng (Polo) Chau, Fernanda B. Viégas, and Martin Wattenberg
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Fig. 1. With GAN Lab, users can interactively train Generative Adversarial Networks (GANs), and visually examine the model training
process. In this example, a user has successfully used GAN Lab to train a GAN that generates 2D data points whose challenging
distribution resembles a ring. A. The mode! overview graph summarizes a GAN model's structure as a graph, with nodes representing
the generator and d itor submodels, and the data that flow through the graph (e.g., fake samples produced by the generator).
B. The layered distributions view helps users interpret the interplay between submodels through user-selected layers, such as the
discriminator’s classification heatmap, real samples, and fake samples produced by the generator.

Abstract—Recent success in deep learning has generated immense interest among practitioners and students, inspiring many to
learn about this new technology. While visual and interactive approaches have been successfully developed to help people more easily
learn deep learning, most existing tools focus on simpler models. In this work, we present GAN Lab, the first interactive visualization
tool designed for non-experts to learn and experiment with Generative Adversarial Networks (GANs), a popular class of complex
deep learning models. With GAN Lab, users can interactively train generative models and visualize the dynamic training process's
intermediate results. GAN Lab tightly integrates an mode! overview graph that summarizes GAN's structure, and a layered distributions
view that helps users interpret the interplay between submodels. GAN Lab introduces new interactive experimentation features for
learning complex deep learning models, such as step-by-step training at multiple levels of abstraction for understanding intricate
trainina dvnamics. Implemented usina TensorFlow is. GAN Lab is accessible to anvone via modern web browsers. without the need for




LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in
Recurrent Neural Networks

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M. Rush
— Harvard School of Engineering and Applied Sciences —
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Understanding

Model Behavior

SEQ2SEQ-VIS : A Visual Debug

—

ging Tool for

Sequence-to-Sequence Models

Hendrik Strobelt*, Sebastian Gehrmann®, Michael Behrisch, Adam Perer, Hanspeter Pfister, Alexander M. Rush

Fig. 1. The LSTMVis user interface. The user interactively selects a range of text specifying a hypothesis
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Select View (a). This range is then used to match similar hidden state patterns displayed in the Match View (b
by specifying a start-stop range in the text (c) and an activation threshold (t) which leads to a selection of hi
The start-stop range can be further constrained using the pattern plot (d). The meta-tracks below depict ex|
position like POS (e1) or the top K predictions (e2). The tool can then match this selection with similar hidd
data set of varying lengths (f), providing insight into the representations learned by the model. The match vi
user-defined meta-data encoded as heatmaps (g1,92). The color of one heatmap (g2) can be mapped (h) to {
allows the user to see patterns that lead to further refinement of the selection hypothesis. Navigation aids proy

Abstract— Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a rem
sequence modeling that learn a dense black-box hidden representation of their sequential input. Researct
understanding these models have studied the changes in hidden state representations over time and noti
patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent
focus on understanding these hidden state dynamics. The tool allows users 1o select a hypothesis input rang
changes, to match these states changes to similar patterns in a large data set, and to align these results wil
from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dal
phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for fu
We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data aftq
revealed great interest in the machine learning community.

+

-
—
—
=
e e e ]
| - Sr—prjr——— e ——————————— ]
" o i i, et ] s et o i ey et g
e sty e i i i+
— —
T ————— .
= —
e e —
e —————— e ————
| - r——t——
P E—— . f—
— .

Fig. 1. Example of Seq2Seq-Vis. In the translation view (left), the source sequence “our tool helps to find errors in seq2seq models
using visual analysis methods.” is franslated into a German sentence. The word “seg2seq” has correct attention between encoder and
decoder (red highlight) but is not part of the language dictionary. When investigating the encoder neighborhoods (right), the user sees
that “seg2seq” is close to other unknown words “{unk) " The buttons enable user interactions for deeper analysis.

Abstract—Neural sequence-to-sequence models have proven to be accurate and robust for many sequence prediction tasks, and
have become the standard approach for automatic translation of text. The models work with a five-stage blackbox pipeline that begins
with encoding a source sequence to a vector space and then decoding out to a new target sequence. This process is now standard,
but like many deep learning methods remains quite difficult to understand or debug. In this work, we present a visual analysis tool
that allows interaction and "what if"-style exploration of trained sequence-to-sequence models through each stage of the translation
process. The aim is to identify which patterns have been learned, to detect model errors, and to probe the model with counterfactual
scenario. We demonstrate the utility of our tool through several real-world sequence-to-sequence use cases on large-scale models.

+




Diagnosis



A Workflow for Visual Diagnostics of Binary Classifiers Diagnosis

using Instance-Level Explanations

Model Outputs'

Josua Krause* Aritra Dasgupta’ Jordan Swartz* Yindalon Aphinyanaphongs® Enrico Bertinil L
NYU Tam;lon ‘ F'apiﬂc N¢ ) . .
School of Engineering National Lt Manifold: A Mode|-Agn0$t|C Framework for Interpretatlon

ABSTRACT

Human-in-the-loop data analysis appl
transparency in machine learning mods
and trust their decisions. To this end,
ics workflow to help data scientists a
diagnose, and understand the decisions
The approach leverages “instance-level
local feature relevance that explain siny
to build a set of visual representations
investigation. The workflow is based
sentations and steps: one based on agy
data distributes across correct / incorr
explanations to understand which feat
decisions; and one based on raw data,
tial root causes for the observed patten
from a long-term collaboration with a
and healthcare professionals who usec
of machine learning models they deve
this collaboration demonstrates that th
experts derive useful knowledge about tl
it describes, thus experts can generate
model can be improved.

Keywords: Machine Learning, Interpy

1 INTRODUCTION

In this paper we propose an interactive

interface to help data scientists and d¢
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and Diagnosis of Machine Learning Models
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Abstract— Interpretation and diagnesis of machine learning
in new approaches. We present Manifold, a framework tha
and comparison of machine learning models in a more tral
on visualizing the internal logic of a specific model type (i.€
scenario where different model types are integrated. To this

access the internal logic of the model and solely observes th . : T ’ .
and probability distribution). We describe the workflow of & (d) Small multiples by sex. Each scatterplot (e) Histograms of performance in a regres- (f) Using images as thumbnails for image

commonly involved in the model development and diagnosis shows age vs positive classification score, sion model that predicts age, faceted into 3 datasets
(verification). The visual components supporting these task colored by classification age buckets
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Analyzing the Noise Robustness of Deep Neural Networks Robustness

Mengchen Liu*, Shixia Liu*, Hang Su’, Kelei Cao*, Jun Zhu'! L

Dept. U,G'f,ﬁ;f*;ﬂfﬁﬁﬁg{ﬂﬂ ;ﬂt:;f;‘e‘:f:gfﬁﬁnfglf";gﬂﬁg_?g;-;;;‘gg Explaining Vulnerabilities to Adversarial Machine Learning through
Visual Analytics
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Figure 1: Explaining the misclassification of adversarial panda images. The root cause is that the
the adversarial examples (F-), which leads to the failure of detecting a panda’s face (Fp). As a|
are misclassified: (a) input images; (b) datapath visualization at the layer and feature map levels
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Fig. 1. Reliability attack on spam filters. (1) Poisoning instance #40 has the largest impact on the recall value, which is (2) also depicted
in the model overview. (3) There is heavy overlap among instances in the two classes as well the poisoning instances. (4) Instance #40
has been successfully attacked causing a number of innocent instances to have their labels flipped. (5) The flipped instances are very
close to the decision boundary. (6) On the feature of words “will" and “email", the variances of poisoning instances are large. (7) A
sub-optimal target (instance #80) has less impact on the recall value, but the cost of insertions is 40% lower than that of instance #40.

Abstract— Machine learning models are currently being deployed in a variety of real-world applications where model predictions are
used to make decisions about healthcare, bank loans, and numerous other critical tasks. As the deployment of artificial intelligence
technologies becomes ubiquitous, it is unsurprising that adversaries have begun developing methods to manipulate machine learning
models to their advantage. While the visual analytics community has developed methods for opening the black box of machine learning
models, little work has focused on helping the user understand their model vulnerabilities in the context of adversarial attacks. In this
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SUMMIT: Scaling Deep Learning Interpretability by
Visualizing Activation and Attribution Summarizations

Fred Hohman, Haekyu Pa
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Fig. 1. With Summit, users can scalably summariz
network detects and how they are related. In this €
However, SUMMIT reveals surprising associations it
“tench” prediction is dependent on an intermediate “f
like “scales,” ‘person,” and ‘fish". (A) Embedding V
(B) Class Sidebar enables users to search, sort, i
highly activated neurons as vertices (“scales,” “fish?

Abstract—Deep learning is increasingly used in de
predictions remains a fundamental challenge. Exis
explaining predictions for single images or neurons.

millions of images, such explanations can easily mi
systematically summarizes and visualizes what feal
predictions. SUMMIT introduces two new scalable s|
and (2) neuron-influence aggregation identifies rel
the novel attribution graph that reveals and summa
outcomes. SUMMIT scales to large data, such as
visualization and dataset examples to help users di
We present neural network exploration scenarios
large-scale image classifier’s learned representation
runs in modern web browsers and is open-sourced,

Index Terms—DNeep learning interpretahbility, visual
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DQNViz: A Visual Analytics Approach to Understand
Deep Q-Networks

Junpeng Wang, Liang Gou, Han-Wei §
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Fig. 1. DQNViz: (a) the Statistics view presents the overall training {
view shows epoch-level statistics with pie charts and stacked bar ¢l
patterns of the DQN agent in different episodes; (d) the Segment vig

Abstract— Deep Q-Network (DQN), as one type of deep reinfore
acquires optimal actions while interacting with an environment. The|
players across many Atari 2600 games. Despite the superhuman pe
the sophisticated behaviors of the DQN agent remain to be challen
large number of experiences dynamically generated by the agent.
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AcTIVIS: Visual Exploration of Industry-Scale
Deep Neural Network Models

Minsuk Kahng, Pierre Y. Andrews, Aditya Kalro, and Duen Horng (Polo) Chau
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1. Susan starts exploring the
maodel overview. She selects a
data node (yellow).

4. Inspecting instance #120's activations
reveals it activates neurons in Ways
different from correctly classified ones
(#38, #47) and from its class (NUM),

3. Susan explores classification
results for instances (questions).
She wonders why question #120,
asking about numeric values, is
misclassified.

Clicking an instance in

Fig. 1. AcTIVIs integrates several coordinated views to support exploration of complex deep neural network models, at both instance-
and subset-level. 1. Our user Susan starts exploring the moedel architecture, through its computation graph overview (at A). Selecting a
data node (in yellow) displays its neuron activations (at B). 2. The neuron activation matrix view shows the activations for instances
and instance subsets; the projected view displays the 2-D projection of instance activations. 3. From the instance selection panel (at
C), she explores individual instances and their classification results. 4. Adding instances to the matrix view enables comparison of
activation patterns across instances, subsets, and classes, revealing causes for misclassification.

Abstract— While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these
models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the
complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges
that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers
at Facebook, we have developed, deployed. and iteratively improved AcTIVIS, an interactive visualization system for interpreting
larna-eralea Aaan laarning modale and recnlie By tinhtlv intenrating mibimla coordinatad viewe onirh ac a camovifatinn aranh ovaryicia



Analyzing the Training Processes of Deep Generative Models
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Fig. 1. DGMTracker, a visual analytics tool that helps experts understand and diagnos
models (DGMs): (a) the loss changes; (b) the data flow visualization to illustrate how data
neurons influence the output of the neuron of interest: (c) visualization of the training dyr

Abstract— Among the many types of deep models, deep generative models (DGMs) pl
unsupervised and semi-supervised learning. However, training DGMs requires more sk
training is more complex than other types of deep models such as convolutional neural nef
approach for better understanding and diagnosing the training process of a DGM. To |
process, we first extract a large amount of time series data that represents training dyni
blue-noise polyline sampling scheme is then introduced to select time series samples, \
visual clutter. To further investigate the root cause of a failed training process, we proposg
how other neurons contribute to the output of the neuron causing the training failure. T
learning experts to demonstrate how our approach helps understand and diagnose the
how our approach can be directly used to analyze other types of deep models, such as (

Index Terms—deep learning, deep generative models, blue noise sampling, credit assi;_
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Visual Analytics for Topic Model Optimization
based on User-Steerable Speculative Execution

Mennatallah El-Assady'?, Fabian Sperrle', Oliver Deussen', Daniel Keim', and Christopher Collins?
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Fig. 1: The Tree-Speculation View is used to compare two topic models and shows the differences. Deleted branches are blurred,

while moved, newly added and removed nodes and keywords are highlighted. To efficiently guide users towards perceivable model
quality improvements, our system automatically proposes optimizations like the merge of two topics depicted here. By visualizing
model uncertainties and low quality topics, we foster trust in the model and empower users to directly address these shortcomings.

Abstract— To effectively assess the potential consequences of human interventions in model-driven analytics systems, we establish
the concept of speculative execution as a visual analytics paradigm for creating user-steerable preview mechanisms. This paper
presents an explainable, mixed-initiative topic modeling framework that integrates speculative execution into the algorithmic decision-
making process. Our approach visualizes the model-space of our novel incremental hierarchical topic modeling algorithm, unveiling its
inner-workings. We support the active incorporation of the user's domain knowledge in every step through explicit model manipulation
interactions. In addition, users can initialize the model with expected topic seeds, the backbone priors. For a more targeted optimization,
the modeling process automatically triggers a speculative execution of various optimization strategies, and requests feedback whenever



FAIRVIS: Visual Analytics for

Discovering Intersectional Bias in Machine Learning
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Figure 1: FalrVIS integrates multiple coordinated views for discovering intersectional bias. Above, our user investig
intersectional subgroups of sex and race. A. The Feature Distribution View allows users to visualize each feature's distriby
generate subgroups. B. The Subgroup Overview lets users select various fairness metrics to see the global average p
and compare subgroups to one another, e.g., pinned Caucasian Males versus hovered African-American Males. The
Recall and False Positive Rate show that for African-American Males, the model has relatively high recall but also the high
positive rate out of all subgroups of sex and race. C. The Detailed Comparison View lets users compare the details of tw
and investigate their class balances. Since the difference in False Positive Rates between Caucasian Males and African-4
Males is far larger than their difference in base rates, a user suspects this part of the model merits further inquiry. D. The §
and Similar Subgroup View shows suggested subgroups ranked by the worst performance in a given metric.
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FairSight: Visual Analytics for Fairness in Decision Making

Yongsu Ahn, Yu-Ru Lin
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visual analytic system, FairSight, is implemented based on our proposed framework, to help data scientists and practitioners make
tair decisions. The decision is made through ranking individuals who are either members of a protected group (orange bars) or a
non-protected group (green bars). (a) The system provides a pipeline fo help users understand the possible bias in a machine learning
task as a mapping from the input space to the cutput space. (b) Different notions of fairness — individual fairness and growp fairness -
are measured and summarized numerically and visually. For example, the individual fairness is quantified by how pairwise distances
between individuals are preserved through the mapping. The group fairness is quantified by the extent to which it leads to fair outcome
distribution acrass groups, with (i) a 2D plot, (i) a color-coded matrix , and (i) a ranked-list plot capiuring the pattern of potential biases.
The system provides diagnostic modules to help (iv) identify and (v) mitigate biases through (c) investigating features before running a
medel, and (d) leveraging fairess-aware algorithms during and after the fraining step.

Abstract— Data-driven decision making related to individuals has become increasingly pervasive, but the issue concerning the
potential discrimination has been raised by recent studies. In response, researchers have made efforts to propose and implement
tairness measures and algorithms, but those efforts have not been translated to the real-world practice of data-driven decision making.
As such, there is still an urgent need to create a viable tool to facilitate fair decision making. We propose FairSight, a visual analytic
systemn to address this need; it is designed to achieve different notions of fairness in ranking decisions through identifying the required
actions — understanding, measuring, diagnosing and mitigating biases — that together lead to fairer decision making. Through a
case study and user study, we demonstrate that the proposed visual analytic and diagnostic modules in the system are effective in
understanding the fairness-aware decision pipeline and obtaining more fair outcomes.

Index Terms—Faimess in Machine Learning, Visual Analytic
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DeepEyes: Progressive Visual Analytics

for Designing Deep Neural Networks

Nicola Pezzotti, Thomas Hollt, Jar

Fig. 1. DeepEyes is a Progressive Visua
on the training is given by the commonly |
that allows the detection of stable layers. |
filters are detected in the Activation Heatm
relationships among the filters in a layer a

Abstract—Deep neural networks are now
classifiers, where features are handcrafté
handcrafting the features, it is now the nef\
the number of layers or the number of filter
design quidelines exist. designing a neur
due to the large datasels used for training
the design of neural networks during traif
stable set of patterns and, therefore, are of
superfluous filters or layers, and informatio
through multiple use cases, showing how
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RetainVis: Visual Analytics with Interpretable and Interactive
Recurrent Neural Networks on Electronic Medical Records
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Fig. 1. A screenshot of RetainVis consisti
summary view (right) of patients. (B) Patien
individual patients in a row of rectangles. |
Users can open (D) Patient Editor to condu

Abstract— We have recently seen many s{
(EMRs), which contain histories of patients’(
states of patients. Despite the strong perfo
particular prediction. Such black-box natul
established methods to interactively leverage
our design study aims to provide a visual @
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Towards Better Analysis of Deep Convolutional Neural Networks
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Fig. 1. CNNVis, a visual analytics toolkit that helps experts understand, diagnose, and refine deep CNNs.

Abstract— Deep convolutional neural networks (CNNs) have achieved breakthrough performance in many pattern recognition tasks
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DeepCompare:

Visual and Interactive

Comparison of
Deep Learning
Model Performan

Tuan Manh La
Purdue Universl

Sugeerth Murugesan
University of California, Davis

Sana Malik, Fan Du, and Eunyee Koh
Adobe Research

Abstract—Deep learning models have become the state-ol
text sentiment analysis to facial image recognition. Howev
certain models perform better than others or how one mods
another is often difficult yet critical for increasing their effe
prediction accuracy, and enabling fairness. Traditional mei
efficacy, such as accuracy, precision, and recall provide a\
performance; however, the qualitative intricacies of why ol
than another are hidden. In this paper, we interview machir
understand their evaluation and comparison workflow. Froi
a visual analytic approach, DeepCompare, to systematicall
deep learning models, in order to provide insight into the my
interactively assess tradeoffs between two such models. T
evaluate model results, identify and compare activation pa
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Progressive Learning of Topic Modeling Parameters:
A Visual Analytics Framework

Mennatallah El-Assady'~, Rita Sevastjanova', Fabian Sperrle', Daniel Keim', and Christopher Collins?

'University of Konstanz, Germany
*University of Ontario Institute of Technology, Canada
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Fig. 1. Parameafar Distribution View using comparative bar charts. This compact visualization technique enhances the comparison of
two parameter distributions using mirrored bar-charts as a baseline and two asymmetrical violin-style plots as distribution estimates.
The plots are scaled using the ralio between the two compared assoriments (on both sides). The larger value is scaled to the full width
of the baseline and the smaller value is scaled proportionally. This figure depicts the comparison of the utterance descriptor features of
the second US presidential debate between Obama and Romney in 2012. All ullerances are sorted according 1o their lopic coherence.

Abstract— Topic modeling algorithms are widely used 1o analyze the thematic compositicn of text corpora bul remain difficult to
interpret and adjust. Addressing these limitations, we present a modular visual analytics framewark, tackling the understandability and
adaptability of topic models through a user-driven reinforcement kearning process which does not require a deep understanding of the
undarlying topic modeling algorithms. Given a document corpus, our approach initializes o algorithm configurations basad on a
parameler space analysis that enhances document separability. We abstract the model complaxity in an interactive visual workspace for
axploring the awmomatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing
documents. The main contribution of our work is an iterative decision-making technigue in which ugers provide a document-based
ralovmmnrs foordbBack that asllasae thas framaownsrl ta anmaarsas a9 icear.anddnreasd tandks Aot itins Wa ales remert foadbac~l froem o



Human-Centered Tools for Coping with Imperfect
Algorithms During Medical Decision-Making

Carrie J. Cai, Emily Reif, Narayan Hegde, Jason Hipp, Been Kim, Daniel Smilkoy,
Martin Wattenberg, Fernanda Viegas, Greg S. Corrado, Martin C. Stumpe, Michael Terry

Google Brain, Google Health
Mountain View, CA

{cjcai,ereif, hegde hipp.beenkim,smilkov,wattenberg, viegas, gcorrado, mstumpe,n

ABSTRACT

Machine learning (ML) is increasingly being used in image
retrieval systems for medical decision making. One applica-
tion of ML is to retrieve visually similar medical images from
past patients (e.g. tissue from biopsies) to reference when
making a medical decision with a new patient. However, no
algorithm can perfectly capture an expert's ideal notion of
similarity for every case: an image that is algorithmically
determined to be similar may not be medically relevant to a
doctor’s specific diagnostic needs. In this paper, we identified
the needs of pathologists when searching for similar images
retrieved using a deep learning algorithm, and developed
tools that empower users to cope with the search algorithm
on-the-fly, communicating what types of similarity are most
important at different moments in time. In two evaluations
with pathologists, we found that these refinement tools in-
creased the diagnostic utility of images found and increased
user trust in the algorithm. The tools were preferred over a
traditional interface, without a loss in diagnostic accuracy.
We also observed that users adopted new strategies when
using refinement tools, re-purposing them to test and un-
derstand the underlying algorithm and to disambiguate ML
errors from their own errors. Taken together, these findings
inform future human-ML collaborative systems for expert
decision-making.
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Semantic Concept Spaces: Guided Topic Model Refinement
using Word-Embedding Projections

Mennatallah El-Assady'~, Rebecca Kehlbeck', Christopher Collins®, Daniel Keim', and Oliver Deussen'

! University of Konstanz, Germany. % University of Ontario Institute of Technology, Canada.
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Fig. 1: Guided relevance feedback for the targeted refinement of incoherent areas in the Semantic Conecpt Space. This user guidance
component tours through the space and highlights potentially uncertain areas, suggesting a recommended action for refinement.

Abstract— We present a framework that allows users to incorporate the semantics of their domain knowledge for topic model refinement
while remaining model-agnostic. Our approach enables users to (1) understand the semantic space of the model, (2) identify regions of
potential conflicts and problems, and (3) readjust the semantic relation of concepts based on their understanding, directly influencing the
topic modeling. These tasks are supported by an interactive visual analytics workspace that uses word-embedding projections to define
concept regions which can then be refined. The user-refined concepts are independent of a particular document collection and can be
transferred to related corpora. All user interactions within the concept space directly affect the semantic relations of the underlying
vector space model which, in turn, change the topic modeling. In addition to direct manipulation, our system guides the users' decision-
making process through recommended interactions that point out potential improvements. This targeted refinement aims at minimizing
the faedback reauired for an efficient human-in-the-loon orocacse We confirm the imoroveamente achieved throtiah aur anaroach in two




Minions, Sheep, and Fruits: Metaphorical Narratives
to Explain Artificial Intelligence and Build Trust
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Shall we play? — Extending the Visual Analytics
Design Space through Gameful Design Concepts

Rita Sevastjanova*
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Going beyond Visualization: Verbalization as Complementary

Beyond VIS

Medium to Explain Machine Learning Models
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The framework for explainable Al and interactive

machine learning. Making XAl accessible

https://explainer.ai/

explAlner: A Visual Analytics Framework
for Interactive and Explainable Machine Learning

Thila Spinner, Udo Schlegel, Hanna Schéfer, and Mennatallah El-Assady
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Fig. 1: Close-up view of an explainer, the main building-block used to construct an iterative XAf pipeline for the understanding,
diagnosis, and refinement of ML models. Explainers have five properties; they take one or more model states as input, applying an
XAl method, to output an explanation or a transition function. Global monitoring and steering mechanisms expand the pipeline to
the full XA{ framework, supporting the overall workflow by guiding, steering, or tracking the explainers during all steps.

Abstracl— We propose a framework for inleractive and explainable machine leaming that enables users 1o (1) understand maching
learning modeals; (2) diagnose model limitations using different explainable Al methods; as well as (3) refine and oplimize the models.
Cwr framework combines an iterative XAl pipeline with eight global manitoring and steering mechanismes, including quality monitoring,
provenance fracking, modal comparison, and trust building. To operationalize the framework, we prasent explAlner, a visual analytics
systemn for interactive and explainable machine leaming that inslantiates all phases of the suggested pipeline within the commonly
used TensorBoard environment. We performed a usar-sludy with nine parficipants across different expertise levels to axamine thair
perception of our workflow and to collect suggestions 1o hll the gap between our system and framework. The evaluation confirms that
aur tightly integrated systam l2ads to an informed machine learning procass while disclosing opportunities for further extensions.

Index Terms—Explainable Al, Interactive Machina Learning, Deep Learning, Visual Analytics, Interprelability, Explainability

+


https://explainer.ai/

ML Model st S

Data Sample Explanation

XAkas:a Process

Resources



XAl as a Process



Model State X

ML

ML Input = ML Model = Output



Model State X

L
ML Input = ML Model = Ollj\:lput

—

XAl lnput =) XAl Method = XAl Output

Explainer A



Model State X

ML
ML Input = ML Model = St

—

| o | ~

¥ ¥
External
[" XAl Input =) XAl Method = XAl Output

Explainer A




Model State X
Model State Y Model State Z

ML Input = ML Model = Output D S D S

| g |
¥ ¥
External
[-» XAl Input =) XAl Method = XAl Output

Explainer A




Model State X
Model State Y Model State Z

ML Input = ML Model = Output D S D S

L .
¥ ¥ [* explanations
(visualizations, verbalizations,

[* XAl Input » XAl Method * XAl OUtpUt [ surrogate models, etc.)
L3

External

Resources

Explainer A



Model State X

Model State Y Model State Z Final Model
ML
ML Input = ML Model = . D S D S H Ho
utput A
— ) — ) \\
w—%—— _— \\\ \\\\\
| g | | g | N
¥ ¥ [‘ explanations .
External (visualizations, verbalizations, ',
REE e [* XAl Input » XAl Method * XAl OUtpUt surrogate models, etc.) !
= transition functions /

(suggested changes in ML -7
. model, parameters, data)
Explainer A



Model State X XAl Pipeline
Model State Y Model State Z Final Model

ML Input = ML Model = Output D S 5 S ? D

) ) \
[ _______——' \
— — e e e — — — N
- n = N
— ~
f \\-_-
~

L .
¥ ¥ [* explanations N
(visualizations, verbalizations, ',

[* XAl Input » XAl Method * XAl OUtpUt surrogate models, etc.) !

1
=) transition functions /!
(suggested changes in ML -7
model, parameters, data)

External
Resources

Explainer A

___________________________________________________________________________________________________________________________________



Model State X XAl Pipeline
Model State Y Model State Z Final Model

ML Tasks
MLInput ‘ ML Model » Output * » » * » * ? * » Justification

\I/—/’ _- _-- \ Understanding
== === \ XAl
T e S

w = ~—

L .
¥ ¥ [* explanations N
(visualizations, verbalizations, ',

[* XAl Input » XAl Method * XAl OUtpUt surrogate models, etc.) !

1
=) transition functions /!
(suggested changes in ML -7
model, parameters, data)

External
Resources

Explainer A

___________________________________________________________________________________________________________________________________



Model State X XAl Pipeline
Model State Y Model State Z Final Model

ML Tasks
MLInput ‘ ML Model » Output * » » * » * ? * » Justification

g e i —pemp——— AN XAl
T e S
wF ~el

T T | RN Justification
explanations ~ . ‘
External [* (visualizations, verbalizations, ', D Ia g NOSIS XAl
Resources [* XAl In pUt » XAl Method * XAl OUtpUt surrogate models, etc.) !
= transition functions /

(suggested changes in ML -7

. model, parameters, data)
Explainer A

___________________________________________________________________________________________________________________________________



Model State X XAl Pipeline
Model State Y Model State Z Final Model

ML Tasks
MLInput ‘ ML Model » Output ‘ » » ‘ » * ? * » Justification

s === ———— N XAl
T — S
= S

T T | RN Justification
explanations S . ‘
External [* (visualizations, verbalizations, | D Ia g NOSIS XAl
Resources [‘ XAl InpUt » XAl Method * XAl OUtpUt surrogate models, etc.) !
= transition functions / Justification
(suggested changes in ML -7 .
. model, parameters, data) R Efl n e m e nt
Explainer A IML

___________________________________________________________________________________________________________________________________



o = - = = = e e En E Em S Em SR Em G SR S Em E EE S EE S EE G EE EE SR Em S EE N S Gm S EE EE Em Em S Em G EE Em S Gm S EE EE EE Em S Em G EE R Gm S Em S Em S Em S S EE R Gm S EE N S Em S Em EE EE Em R Em G S S Gm S R N S Em S Em S S S em R S Gm e Em G Em e Gm e Em e em e Em e e

Model State X XAl Pipeline
Model State Y Model State Z Final Model

ML Tasks
MLInput ‘ ML Model » Output ‘ » » ‘ » * ? * » Justification

S — === K XAl |
T — N .
v = . |

T T | RN Justification
explanations S . ‘
External [* (visualizations, verbalizations, D Ia g NOSIS XAl
Resources [* XAl InpUt » XAl Method * XAl OUtpUt surrogate models, etc.) !
= transition functions / Justification
(suggested changes in ML -7 .
. model, parameters, data) R Efl ﬂ e m e nt
Explainer A IML

___________________________________________________________________________________________________________________________________

________________________________________________________________________________________________________________________________________



o = - = = = e e En E Em S Em SR Em G SR S Em E EE S EE S EE G EE EE SR Em S EE N S Gm S EE EE Em Em S Em G EE Em S Gm S EE EE EE Em S Em G EE R Gm S Em S Em S Em S S EE R Gm S EE N S Em S Em EE EE Em R Em G S S Gm S R N S Em S Em S S S em R S Gm e Em G Em e Gm e Em e em e Em e e

Model Quality Monitoring Search Space Exploration XAl Framework

Data Shift Scoring Comparative Analytics

Model State X XAl Pipeline
Model State Y Model State Z Final Model

ML Tasks
MLInput » ML Model » Output * * » * * * ? * » Justification

~— ] —= _—~ - Understanding
= \ XAl |
T — N !
w ~ |

T T | RN Justification
explanations ~ . ‘
External [* (visualizations, verbalizations, | D Ia g NOSIS XAl
Resources [* XAl InpUt » XAl Method * XAl OUtpUt surrogate models, etc.) !
= transition functions / Justification
(suggested changes in ML -7 .
. model, parameters, data) R efl n e m e nt
Explainer A IML

___________________________________________________________________________________________________________________________________



o = - = = = e e En E Em S Em SR Em G SR S Em E EE S EE S EE G EE EE SR Em S EE N S Gm S EE EE Em Em S Em G EE Em S Gm S EE EE EE Em S Em G EE R Gm S Em S Em S Em S S EE R Gm S EE N S Em S Em EE EE Em R Em G S S Gm S R N S Em S Em S S S em R S Gm e Em G Em e Gm e Em e em e Em e e

Model Quality Monitoring Search Space Exploration XAl Framework

Data Shift Scoring Comparative Analytics

Model State X XAl Pipeline
Model State Y Model State Z Final Model

ML Tasks
MLInput » ML Model » Output * » » * » » ? * » Justification

- === ——— . XAl !
_— e —— N :
f/ AT :

T T RN Justification
explanations > ; :
External [* (visualizations, verbalizations, ', D Id g NOSIS XAl
REE e [* XAl Input » XAl Method » XAl OUtpUt surrogate models, etc.) !
=) transition functions / Justification
(suggested changes in ML -7 .
. model, parameters, data) R efl n e m e nt
Explainer A IML
XAl Strategies Knowledge Generation

\ Provenance Tracking Reporting & Trust Building



External Resource
1

External Resource
2

External Resource
3

Model State 1

Model Quality Monitoring

«Of{}

F o ——
transition

Explainer A

>3

function
| —
Explainer B
visual
explanation

—

Explainer C

>

Model State 2

>

Eal
|
7|

comparative
explanation

Provenance Tracking

«Of{}

transition
function

4

| S— |
Explainer D

> »

Model State n

>3

Explainer Z
O—_

> 5 7

provenance
report



Model Quality Search Space

D . .
Monitoring Exploration AR Sl SO

Model State (4) abstraction (model coverage):

model state / “ (1) number of model

considered / states considered
!
— —
[* ¥ ¥ [# explanations

XAl XAl
External  (5) dependency: L e * Method * Output

Resources  data, model, domain [.’

Explainer

high (whole model), low (parts)
Data ExplainerA —— ;  bwlanes Explainer C
(3) level (data coverage): ML * ML ‘ ML +9 ['@_'ﬂ P e S
global (all), local (subset) Input Model Output ! s
§ ARt e
—~ - RN
(2) parts of the —_—— S o

Comparative Analytics

Model State 2 Model State n
1
ti

‘.. Tasks

[# transition functions

Justification

Understanding
XAl

! Justification
§ Diagnosis
1 XAl

Justification

Refinement
IML

Provenance

; K I i
XAl Strategies nowledge Generation Tracking

Reporting & Trust
Building



Explainer Properties

(1) number of model states considered

(2) parts of the model state considered

(3) level (data coverage): global, local

(4) abstraction (model coverage): high, low
(5) dependency: data, model, domain

Model State Search Space

comparative

instance

search
area



Explainer Properties

(1) number of model states considered

(2) parts of the model state considered

(3) level (data coverage): global, local

(4) abstraction (model coverage): high, low
(5) dependency: data, model, domain

Model State 1

> &

- input-only
- model-only

- output-only

- model-agnostic

- model-specific

IML XAl XAl \I/

> 0N




Explainer Properties

(1) number of model states considered

(2) parts of the model state considered

(3) level (data coverage): global, local

(4) abstraction (model coverage): high, low
(5) dependency: data, model, domain

o. : o? " o \
\local/
‘e =subset or sample
global * ° + |
* =allpossible * *.

inputs and outputs .

I I
Level = Data Coverage




Explainer Properties

(1) number of model states considered

(2) parts of the model state considered

(3) level (data coverage): global, local

(4) abstraction (model coverage): high, low
(5) dependency: data, model, domain

,~~low = parts of the model
/ \

{ A
Ao
\ ‘.‘A\v"lh

o
\

XS
LI
high

/“ . N,
WA ‘ = full model

Abstraction = Model Coverage




Explainer Properties

(1) number of model states considered

(2) parts of the model state considered

(3) level (data coverage): global, local

(4) abstraction (model coverage): high, low
(5) dependency: data, model, domain

External  (5) dependency:
Resources data, model, domain

Explainer A

> »



UNDERSTANDING

TensorBoard

DIAGNOSIS REFINEMENT REPORTING

GRAPHS

INACTIVE

Global Surrogate Models
B Lime

P Anchors

B Cav

Global Gradient Propagation Methods
Grad*Input

IntGrad

Gradient

SmoothGrad

Input Times Gradient

Integrated Gradients

DeeplLift

, Saliency

HH DeConvNet

L PEEEE BB

Global Layer-wise Relevance Propagation

O z-LRP
2 e-LRP (fast)
IO e-LRP (slow)

Model

U3 FunctionExplainer
-~ LossDecay

Graph Flow

Imagelnterpreter
5 InformationFlow

Weights

il HistoTrend

T, MinMax

“ DeadWeight

~* SaturatedWeight

gradients

| inference

)

Try it out on
explainer.ai

conv2d_1

dense

kemel_1
tag

serialized_s.. [ ruoren

kernel

bias_1

serlﬂlzed_‘:? 8>.l_m full_graph

m__I[w'ﬂm'ww-l-...l IR N
o0z |.|'|"-' g
Bl
i
0024 g, ¥

’ 00 ;‘:0;; 1.s'm
HistoTrend Histograms, over Time

The HistoTrend-Tool plots the Histograms of a tensor, one
for each logged step. It shows how the distribution of
values changes over time and can reveal interesting
patterns, such as binning (a) or weight oscillations (b).

(1]
LLILLTTTLLITY
—[ ib)

Al i

Liffe T fumes)

LIME Locai

To provich medel-agressbic wxplanalions, LIME cousnis & surrgaty
mondid, 4.

innarpratatia e, Thia 8 eens Uy usbbialen P irput o
mendid, 4.5, By hiireg B, s cemmisiing ricbalia ani that
ke 1y 3 dirvilar slassiieation s the eriginal leget abal

-5

e 0

Poviinad s

ELRP [SloW) Tl P Gt

H R

LRP vcayer-wiso Asievance Propaganan b4

" R u

£ i & backn

privcindiin, whird Farsriess thal conbabs T sl 1 h highas.
Kaper racuvas msl pibiviarece ko i Thay ar abla ta pick up spechc foatures
of the samplosin the datasal.

Processing Images?
Try Convolutions!

Wihen processng Imagos, conwahstcnal
layars can Improve rumbime and scourcy.

SLRP (SlW) T P it

Q.

B LeCen ol al "raderntbused larming

LiME  nssros P cl?

.K



!/

o = = = = e Em Em mm mm mm mm Em e mm mm mm Em mm mm mm mm e Em e mm mm mm mm M e e Em M e e M Em mm M Em mm mm mm mm mm mm mm Em e Em Em e e mm mm e e e mm e mm e e Em M e e mm e e mm M mm e e e e e e e e Em e e e e e e e e e e e e e e e =

Model Quality Monitoring Search Space Exploration
(Metrics, Bias, Uncertainty, Performance) (Speculative Execution, Targeted Optimization)

Data Shift Scoring
(Training -- Testing Data Continuum )

Comparative Analytics
(Model Selection, Recommendation )

N XAl Pipeline

XAl Strategies
(User Guidance, Explanation Mediums)

Knowledge Generation
(ML Validation, Learning from User Interactions )

Provenance Tracking
(Temporal Evolution, Interaction Tree)

Reporting & Trust Building
(Education, Storytelling, Justification )

XAl Framework ./

N e o o o o o o o e e e e e e e e - —— =

Global Monitoring and Steering Mechanisms

-



@ Dialog &
Argumentation

@Pedagogy @Storytelling

Towards XAl
Structuring the Processes of Explanations

[\Programming [\Trust Building [\Gamification



Linear

Explanation Block

Pathway

©—0

simplification

®

=)
O0—0

explanation by
abnormality

Verification Block

Strategy + Medium

o=
overview first,

details on
demand

?— !

verification:
flipped classroom

(@)
O{'l'\o

top-down

Phase 1: Understanding

Strategy + Medium

O
O}T\O
o

bottom-up

Phase 2: Diagnosis

Explanation Process Model



Domain Model

E

Explanation Block Color is not the Verification Block
only indicator.

Linear ecision & . /)@I

Tree

Pathway Model [3:2 \}L X [
Strategy + Medium % Strategy + Medium -
— )
. g
1 J [ J
Phase 1: Understanding Phase 2: Diagnosis

Explanation Process Model



Linear
Pathway

9—0 ®

simplification

Phase 1:

p 2 Understandin
. g
O— 0—0 P h
overview first, explanation by at W ay S
details on abnormality
demand . .
0-0-0 Linear vs. Iterative °O
o ) . . . %}
2~ Guided vs. Serendipitous
2—1 S
verification:

flipped classroom

P P
O O
o'(;l;\'o o I\o Phase 2:

top-down bottom-up Diagnosis




Linear
Pathway

Y—0 ®

simplification

[ S
O— = ol de)
overview first, explanation by

details on abnormality
demand

72— ¥
verification:
flipped classroom

[ P
@) (@)
on( i\a o o)'I'\o

top-down bottom-up

Medlums

* Visualizations
Verbalizations

EQ%WT

Infographics

Illustrated Text
oG Comics
@ Videos
Q) Audios

==l Images

I

I

Video Games
% Dialog Systems




Linear
Pathway
©—0
simplification
[ S
O— 00
overview first, explanation by
details on abnormality
demand
2—1 S
verification:
flipped classroom
Mo Pes

O ] (o)
o/ i\ Y o’I'\o

top-down bottom-up

Explanation Strategies

o]
“1™ Inductive (Bottom Up)

simplification
metaphorical narrative
divide and conquer
explanation by example
dynamic programming
depth first - breadth first
describe and define
teaching by categories

‘@\“ Deductive (Top Down)

transfer learning

teaching by association

overview first, details on demand
drill down story

define and describe

0+0 Contrastive (Comparison)

opposite and similar
example by abnormality
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Robust XA
Methodology

(through observing other domains)



LingVis VisArgue

Integrating Computational Linguistics Analyzing Successful Rhetoric and
R h and Visual Analytics. Argumentation in Debates.
esearc https://lingvis.io/ http://visargue.uni.kn/

Project

|
Overview E)glAlner

el-assady.com

explAlner

Developing Explainable and Interactive

Visual Musicology

Exploring the Intersection of

Machine Learning. . : .
J Musicology and Visual Analytics.
https://explainer.ai/ )
https://visual-musicology.com/
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What’s the role of humans .ﬂ
in interpretability? 8 |

& How much should we open

o020 the black-box?

How much guidance is needed -
to enable effective XAI? E-
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Structuring XAl using a Museum Metaphor
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CHI21 Workshop

Operationalizing Human-Centered Perspectives in XAl

Sat. May 8 & Sun May 9, 2021
@ 1300 EDT/ 1900 CEST

http://bit.ly/papermuseum

ICLR 2021 Workshop
Rethinking ML Papers
Friday, May 7 2021
@ 800 EDT/ 1900 CEST
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STUDY SETUP Y RESULTS &

Interdisciplinarity Complexity Participant Diversity Evaluation Focus

A Survey of Human-Centered Evaluations in Human-Centered Machine Learning

Fabian Sperrle, Mennatallah El-Assady, Grace Guo, Rita Borgo, Duen Horng Chau, Alex Endert, Daniel Keim
Computer Graphics Forum, 2021 (to appear)
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VISxAI

4% Workshop on
Visualization for AI Explainability A

October 24th or 25th, 2021 at IEEE VIS in New Orleans, Louisiana

The role of visualization in artificial intelligence (AI) gained significant attention in recent years. With the
growing complexity of Al models, the critical need for understanding their inner-workings has increased.
Visualization is potentially a powerful technique to fill such a critical need.

[ ]
The goal of this workshop is to initiate a call for "explainables” / "explorables"that explain how Al techniques ‘ 0 n t r I b u t e t O V I S XA I I
work using visualization. We believe the VIS community can leverage their expertise in creating visual L]

narratives to bring new insight into the often obfuscated complexity of Al systems.

A Visual Exploration of
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UMAP Tour
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Example interactive visualization articles that explain general concepts and communicate experimental insights when

by Gortler, Kehlbeck, and Deussen; (

playing with AT models.

\

? by Jaunet, Vuillemot, and Wolf; (d) Cc

achine by Feng and Wu; (f) Fo

Tour by Li and Sc

! heidegger; (
1t by Strobelt, Phibbs, and Martino.

Join the XAl Slack http /bit.|y/xai-5|ack

conversation!
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Visual Analytics Perspectives
on Interactive and Explainable Machine Learning

Mennatallah El-Assady

University Konstanz
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el-assady.com
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