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An example of ‘proximate cause’

/7-1 /]—2 /7—3
S0 S1 52

a:poisons b:pricks c:goes 53
water —water —water —water
—poison poison poison —poison
ntact intact —intact —intact
alive(c) alive(c) alive(c) dead(c)

J.A. McLaughlin. Proximate Cause. Harvard Law Review 39(2):149-199 (Dec. 1925)

Dretske: structuring vs triggering causes



Logics of action/agency

» ‘Seeing to it that' (Belnap, Perloff, Horty, ..., Broersen, ...

[stit z]p [dstit x|

Many versions!

> Ingmar Porn’s logic of ‘brings it about’

E, F

A common informal reading

[stit 2] — x causes/is responsible for ¢



¥
{
moment-histories
branches
- ol continuations
transitions
trajectories
F—>m

traces

T~

hm alt(T) [7]~

llo|| — a set of moment-histories/transitions/trajectories



altl? — partition
- ~g — equivalence relation
alt,(T) [T]~=
m

hm,

alt, (1) — the action performed by = in 7



alty)’ — partition
T ~y — equivalence relation

<

alty(r) — [7]”

alt, (1) — the action performed by y in 7



Generalisation
For every non-empty subset G C Ag:
~G =det [\yeq ~a

altg(r) = ﬂxeg alt(7)



Generalisation
For every non-empty subset G C Ag:
~G =det [\yeq ~a

altg(r) = ﬂxEG alt(7)

Axiomatisation:

a type S5

[G] type Sb

Op — [Gle (‘necessity’)

(G — [H]p (G CH) (‘superadditivity’)
[Plp < Oy

Exactly the same as ‘distributed knowledge'

<& and (G) are the duals



Y ¥ @
alt — partition
[z]¢ ~g — equivalence relat
alt,(7) [T]~=
m

b,



P

Y ¥ @
alt — partition
[z]¢ ~g — equivalence relat
alt,(7) [T]~=
dstit ©
[ Jo \

b,

[dSt’Lt I]SO —def [93]90 AN ﬁl]sp



Example

P
N

T0 ~b T1

TO ~a T2

Possible actions by a:

Possible actions by b:

{Hmo. 2}, {n}}
Hmo.m}s {2} }



The (deliberative) stit

Choicel!
o e g G /
A" — partition
[z]¢ ~g — equivalence relation
altz{r] 7]
[dstit x| \
m

Choicell' (T)

hm,

And add ‘agent independence’ — a constraint on Choicel'.



stit-independence

‘... simultaneous actions by distinct agents must be
independent in the sense that the choices of one agent cannot
affect the choices available to another; at each moment, each
agent must be able to perform any of his available actions, no
matter which actions are performed at that moment by the
other agents.’ (Horty, 2001)

For all 7 and all pairs of distinct agents x # y:

Choicey' (1) N Choicey' (1) # 0

For all 7 and all distinct agents x,y, ... z:

Choicey' (1) N Choicey!' (1) N -+ - N Choice}' (1) # )



Example (rooms)

To ~b T1

T0 ~a T2

s
~

Possible actions by a:  {{70,72}, {71} }
Possible actions by b:  { {79, 71}, {72} }

No stit-independence: {nin{n}=0

Possible actions by {a,b}: {{m0}, {1}, {=}}



stit-independence

E (Olz]er Ao A Oma]en) = O([m]er Ao A fzn]en)

E [zllyle = Op  forallz#y

= —ldstit z][dstit y]e forall x # vy

More generally
= [GNH]p < [G][H]p



stit-independence: Rationale

A technical requirement, easily avoided, but also:

agency implies free choice *...a possible choice for an agent at a
moment should be considered as a real alternative for
the agent, i.e., the realization of that alternative is
exclusively up to the agent.” (Xu)

simultaneous choices are independent ‘... the only way that the
choices open to one agent can depend on the choices
open to another agent is if the one agent's choices lie
in the causal past of those of another agent.’
(Belnap and Perloff)



Abstract semantics

M = <W7 ~ {Nm }acEAg7 V>

~y C ~ equivalence relations on W

M, 7 EO¢ iff M,7" = ¢ for every 7’ such that 7 ~ 7/
M,7 = [z]p iff M,7" | ¢ for every 7’ such that 7 ~, 7’



Abstract semantics

M = <W7 ~ {Nm }acEAg7 V>

~y C ~ equivalence relations on W

M, 7 EO¢ iff M,7" = ¢ for every 7’ such that 7 ~ 7/
M,7 = [z]p iff M,7" | ¢ for every 7’ such that 7 ~, 7’

moves(a)
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e b

- f "
0 b

Y X
moves(b) T2

a moves(b)




Example (‘Overdetermination’)

To detonate a certain bomb, either a or b must push their buttons.
Both push their buttons simultaneously and the bomb detonates

(k).

T |= [dstit a]k
T = [dstit bk

= [alk A Bk A =Dk

One can define

[dstit! x]o =qef [x]e N —[Ag~{x}]p



Collective/joint action (‘Underdetermination’)

For a different bomb both a and b must push their buttons
simultaneously.

Generalises naturally to groups (sets) of agents:

[dstit G](p =def [G]g& A —Op

But (‘superadditivity'):

= [dstit Gl — [dstit G']¢ (GCa)
= [dstit Gl — [dstit Agle

Ag is a finite set of (unique names for) agents.



‘Strictly stit': Contributors and bystanders

7 = AlNy iff G is a minimal non-empty set s.t. 7 =[Gy
iff G is a minimal set s.t. 7 |= [dstit G]p

Agi” corresponds to Belnap and Perloff's ‘strictly stit'.
= AlNg — [dstit G
= A?‘;ricp < [dstit x|



‘Strictly stit': Contributors and bystanders

T |= AlNo iff G is a minimal non-empty set s.t. 7 =[Gy
iff G is a minimal set s.t. 7 |= [dstit G]p

Ag}i” corresponds to Belnap and Perloff's ‘strictly stit'.
= AlNg — [dstit G
= A?‘;riap < [dstit x|

AT G =Uglr E Agny)
G™ are the contributors to ¢ at T.
Ag~G™ are the 'mere bystanders’ to ¢ at 7 (Belnap and Perloff)

One can further distinguish ‘impotent bystanders’ to ¢ at 7 and
define I'g .



Example (‘Overdetermination’)

In order to detonate yet another bomb (k) any two of a b, ¢ must
push their buttons simultaneously. All three push their buttons.

Tap} kA Aloiey b A AT b
max k

{a,b,c}
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Example (‘Overdetermination’)

In order to detonate yet another bomb (k) any two of a b, ¢ must
push their buttons simultaneously. All three push their buttons.

Tap} kA Aloiey b A AT b
max k:

{a,b,c}

The Brexit referendum 2016

— |dstit Ag]leave
— TIgleave those entitled to vote

—  Afleave leavers + abstainers

—  AT"eque



Essential contributors

T = Nessg ¢ iff 7 = [Ag]lo A —[Ag\Gle
7 |= Ness®™" ¢ iff G is a minimal set s.t. T |= Nessg ¢

Cf. The ‘NESS’ test in law: “c is a necessary element in a set of
conditions sufficient for e".



Essential contributors

T = Nessg ¢ iff 7 = [Agle A —[AgNG]p
7 |= Ness®™" ¢ iff G is a minimal set s.t. T |= Nessg ¢

Cf. The ‘NESS’ test in law: “c is a necessary element in a set of
conditions sufficient for e".

Proposition Suppose 7 = AR p.

™= Uglr b Nessgio } = Uglr b AZ" )

/ \

minimal necessary minimal sufficient



Example: Bomb

Officer a: designated technicians {c,d}.
Officer b: designated technicians {c}.
To detonate this bomb, at least one officer and at least one of her
designated technicians must press their buttons simultaneously.

pushers ‘ ‘ Ness&™" k ‘ APk
(a,b,e,d) [{a,c}, {a,d}, {b,c}|{a,b}, {a,c}, {c,d}|{a,b,c,d}
(a,b,c,-) {a,c}, {b,c} {a,b}, {c} {a,b,c}
(avbv '7d) {a}' {d} {a7d}
(a,-,c d) {a,c}, {a,d} {a}, {c,d} {a,c,d}
(a,-,c,-) {CL}, {C} {a7c}
(af"?d) {a}' {d} {avd}
(',b,C,d) {b}1 {C} {b,C}
('7b7 G, ) {b}' {C} {b,C}




Indeterminism and ‘chancy causation’

Agents a and b can throw a certain precious vase out of a window.
It might break or it might not. a throws the vase out the window
and it breaks (k). Who broke the vase?

T [ [dstit a]k T W la]k

Agents a and b can also move the vase between inside and outside.
If it is outside and it rains, the vase gets wet and is ruined. a
moves the vase outside. It rains. Who ruined the vase?



Vase (two agents)

"

!/
mn Ty out
. —_— .
—rain —raimn
\_/
—wet ’ —wet
Ta
Jb
!
To
Ta
n out
rain rain
—wet wet

T, = [dstit a] out

T, = [dstit a]wet

Ta & a]wet

7o = <la]—wet

7o = <la, bl—wet

7o [ <la, blwet



Two possible constructions

[Z]¢p — had x acted differently, it would have been ¢
()¢ — had z acted differently, it might have been ¢

~xT =def ™~ \ "~z

Two constructions:

(1) is hopeless if there is more than one agent.
(2) is mentioned by Ingmar Porn (1977) but is too weak.

© N Olx]—p does not work either



Chancy causation

But for a, all things being equal, it could have been different.

Suppose we fix the actions of all other agents (here b): b does not
move the vase

o0 mn out
—rain —rain
( —_ >

—wet / —wet
7-(1
/
7o
Ta
m f out
rain fix b rain
—wet wet

In the transformed model:

fix(Ag~{a}), s E wet A Ola]—wet

Can we express this as a formula, without transforming the model?



Chancy causation
With actions of Gy fixed, G can guarantee ¢

(Gp)[Gle  no
(Gp[GrUGle



Chancy causation
With actions of Gy fixed, G can guarantee ¢

(Gp)[Gle  no
(Gp[GrUGle

With actions of Ag~\G fixed, G can guarantee ¢

(AgnG) [(AgnG) UGy
(Ag~G)[Agly



Chancy causation
With actions of Gy fixed, G can guarantee ¢

(Gp)[Gle  no
(Gp[GrUGle

With actions of Ag~\G fixed, G can guarantee ¢

(AgnG) [(AgnG) UGy
(Ag~G)[Agly

Couldg ¢ =qer (Ag~G)[Aglep

A kind of responsibility for ¢:
@ A Couldg —¢

(to be adjusted)
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Ta ™6 70 Ta ~b To Ta ~b Tq

70 ’: [CL, b}—'wet

Ta E (b)[a, b]~wet {b} = Ag~{a}
Ta = wet A Couldyqy —wet

Ta ~b TO



Couldg ¢ =qer (Ag\G)[Aglp

But (‘superadditivity'):

= Couldg ¢ — Couldgr ¢ (GCqG)

Define:

7 = Could®™ ¢ iff G is a minimal set s.t. T = Couldg ¢

A kind of responsibility for ¢:

@ A Could@™ -



Faulty bomb

Ag ={a,b,c}. If a and b together, or ¢ on its own, or all three
push their buttons then the bomb might detonate (k) or might not
(—k); otherwise it will not detonate.

pushers

(a,b,c) k Could{“:liv’::}—‘k COUld{n;,i';}—'k

(a,b,-) k Could =k  Couldfyy —k

(a,-¢) k Could(y —k

(b,¢) Kk Couldfly -k

(¢) k Couldfly —k

(a,,) =k AfGy -k Nessyiok - Nesspoy -k

(b) ~k ATk Nessfifok  Nessf -k |
(b)) =k AT ok ATR ok NessTin <k Nessfih <k

Cases where the bomb might detonate but does not are omitted.



Two kinds of responsibility or ‘causes’

When 7 = [Ag]le A ~O¢:

T E AR
G™ = Ugl{r E Nessg"p} = Uglm E AG ¢}

When 7 = ¢ A =O¢:

TEEA Couldg’i” -

How do they compare when 7 |= [Ag|e A —Op?



Two kinds of responsibility or ‘causes’

When 7 = [Ag]le A ~O¢:

T E AR
G™ = Ugl{r E Nessg"p} = Uglm E AG ¢}

When 7 = ¢ A =O¢:

TEEA Couldg’i” -

How do they compare when 7 |= [Ag|e A —Op?

= [Agle — (CouldG - — Nessg <p)
F [Agle — (Couldc”;““ - — Nessg @)
E [Agle — (Could{“xii‘ - — Ness{"‘;i‘ go) (x € Ag)



Chancy causation: Formulation 2
Formulation 1
@ A Couldg ~¢p = ¢ A (AgnG)[Ag]—p
With actions of Ag~\G fixed, Ag could have ensured —¢
Formulation 2
@ A O[Agl—e A ~(G)[Agl—e

Ag have a way of ensuring - but with actions of G fixed, Ag
have no way of ensuring —.



Chancy causation: Formulation 2
Formulation 1
@ A Couldg ~¢p = ¢ A (AgnG)[Ag]—p
With actions of Ag~\G fixed, Ag could have ensured —¢
Formulation 2
@ A O[Agl—e A ~(G)[Agl—e

Ag have a way of ensuring - but with actions of G fixed, Ag
have no way of ensuring —.

o N\ C[Agl—p N ~(G)[Ag]—yp
o A =O(Ag)p A [G]{Ag)yp
© A [dstit G] (Ag)e

and for minimal such

@ A AF"(Ag)p



‘Chancy stits'

[G°¢ =aet @ A [G](Ag) e
[dstit® Gl =aet ¢ A ldstit G](Ag)e  ([G]°¢p A ~O(Ag)p)

e-min

Mo =qet @ A AT (Ag)



‘Chancy stits'

[G°¢ =aet @ A [G](Ag) e
[dstit® Gl =aet ¢ A ldstit G](Ag)e  ([G]°¢p A ~O(Ag)p)

AE™M o =qot p A AT (Ag)p

We know  Ug{T = AZ"(Ag)¢} = Ug{r = Ness@"(Ag)p}
Lemma = ¢ — (Couldg—~¢ <« Nessg(Ag)p)

Proposition If 7 |= ¢ then

Ualr E AZ™ ¢} = Uglr | Couldd™ —}



Example: Firing squad
Suppose (pretend) {a,b,c,d,e, f,qg,h} all fire simultaneously.

If every individual shot is guaranteed to be fatal:

T A ST A A A
max k

{a,b,c,de,f,g,h}
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Suppose (pretend) {a,b,c,d,e, f,qg,h} all fire simultaneously.

If every individual shot is guaranteed to be fatal:

T A ST A A A
max k

{a,b,c,de,f,g,h}

If every combination of three shots (say) is needed and guaranteed
to be fatal:

fabeyk A ATy kA NATE R

A{abcdefgh}



Example: Firing squad
Suppose (pretend) {a,b,c,d,e, f,qg,h} all fire simultaneously.

If every individual shot is guaranteed to be fatal:

T A ST A A A
max k

{a,b,c,de,f,g,h}

If every combination of three shots (say) is needed and guaranteed
to be fatal:

fabeyk A ATy kA NATE R

A{abcdefgh}

If individual shots are not necessarily fatal but on this occasion it
happens that all of them were:

kA Could&i,?,,c,d,e,f,g,h} ok
AT R NAGE R A - A AT



Causal dependencies and stit

j stands on top of a high building. j may jump or not. If j jumps,
a sniper s may shoot j, or may not. s cannot shoot j if j does not
jump.

Urs) ko ALYE AfGE (G.s)  k ACHNE, ACTNE
. (j,S)/ —k .
(G,) k ATRE (j.?.)/ kAT
. (]7) -k .
(5) =k Ak (50) ok AT R
Deterministic Indeterministic

Other combinations (jumping guaranteed fatal, shooting not),
(shooting guaranteed fatal, jumping not) are also possible.



Example: jumper and screamer

s is not a sniper but a mere observer. If j jumps, s may scream in
alarm, or may not. s does not scream if j does not jump.



Example: jumper and screamer

s is not a sniper but a mere observer. If j jumps, s may scream in
alarm, or may not. s does not scream if j does not jump.

Same model!

(j’ S) k Amin k‘, Amin k k Ae—min k‘, Ae—mink.

<
VA
~—

ik A (7 o AL
| (7,8)" —k _
G.) kAP Go) kAT
| G,y -k
min min
() ~k ATk () ok ATk
In particular:
(Gys) = AT (Gos) b= AT

How can this be?



Example: jumper and screamer (modified)

j reacts to s not the other way round. 7 may jump or not, but a
scream from s always triggers a jump from j.

Same model again.

(j’ S) k Amin k‘, Amin k k Ae—min k‘, Ae_mink

<
»
~—

ik AL G e AL
| (7,5)" —k .

G.) k ATRE Go) b Ag
. (]7) -k .

(o) =k ATk () =k AT R

In particular:

(G.s) = AT (G.s) = AT

Seems reasonable now?



Not really so surprising ...

In the example
E O (s:shouts A —j:jumps)
And so:

E O(s:shouts — j:jumps)
E O(—j:jumps — —s:shouts)

But of course these do not express causal connections’

And then e.g.
= [sle = lily

But that is not a causal connection either



Causal dependencies (perhaps)

Fix Gy € Ag~G whose actions are not causally dependent on G.
(GpGrUGle
If s depends on j:

(j.s) E kA (D) [j]-F j responsible
(J,8) =k A ()L, s] ok

If 7 depends on s:

(J,8) =k A (s)[d, s] -k
(7,8) =k A (D) [s] -k
(4,8) E k A (D)[4, 8]k 4, s jointly responsible

Perhaps this might work — but it does not fit in the stit semantics



The conclusion?

TE A g and T Could®™ ¢ express what we want if at 7
the actions of agents are causally independent.

stit-independence — all actions of distinct agents are causally
independent at all 7



Temporal refinement
jumper-screamer (jumps fatal)

branches
-k k
(5°)

o L -
~ ) (j’.);g.’s§
(4,7 8
NG Gy

/

E N N

stit-independence at each branch point
(ja ) ; (') S)

(+;5)

[71]k A =0k A =[s]k

=
= [s]k A Ok



Temporal refinement

screamer-jumper (jumps fatal)

) branches
/ ()
] k ('7 S) ) (]7 )

()
(‘75); ( )
()

= [k A -0k
= [s]k A —Ok A =[j]k
= [j]k A Dk

.
.

J
J

Details: many, many variations!!



Conclusion

> Agi”go and Nessg‘i” @
AN (Ag)p and Could&™ —¢p

» Causal dependencies are not modelled in stit

» Temporal extensions are essential, for many reasons.
There are many possible variations to be explored.

» Temporally refined models are not a panacea
Sometimes we treat sequential actions as if they were
simultaneous.

And then stit-independence is not wanted (in my opinion).
> stit can be extended with act types
That is essential anyway

(Is it then still stit ?)
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