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An example of ‘proximate cause’

s0

water
¬poison
intact
alive(c)

¬water
poison
intact
alive(c)

s1

¬water
poison
¬intact
alive(c)

s2

¬water
¬poison
¬intact
dead(c)

s3
τ1

a:poisons

τ2

b:pricks

τ3
c:goes

J.A. McLaughlin. Proximate Cause. Harvard Law Review 39(2):149–199 (Dec. 1925)

Dretske: structuring vs triggering causes



Logics of action/agency

I ‘Seeing to it that’ (Belnap, Perloff, Horty, . . . , Broersen, . . . )

[stit x]ϕ [dstit x]ϕ

Many versions!

I Ingmar Pörn’s logic of ‘brings it about’

Ex F

A common informal reading

[stit x]ϕ — x causes/is responsible for ϕ



m

τ τ ′

hm

ϕ

F

moment-histories
branches
continuations
transitions
trajectories
traces

τ ∼ τ ′

alt(τ) [τ ]∼

‖ϕ‖ — a set of moment-histories/transitions/trajectories



m

τ

hm

altmx — partition
∼x — equivalence relation

altx(τ) [τ ]∼x

altx(τ) — the action performed by x in τ



m

τ

hm

altmy — partition
∼y — equivalence relation

alty(τ) [τ ]∼y

alty(τ) — the action performed by y in τ



Generalisation

For every non-empty subset G ⊆ Ag :

∼G =def
⋂
x∈G ∼x

altG(τ) =
⋂
x∈G altx(τ)

Axiomatisation:

2 type S5

[G] type S5

2ϕ → [G]ϕ (‘necessity’)

[G]ϕ → [H]ϕ (G ⊆ H) (‘superadditivity’)

[∅]ϕ ↔ 2ϕ

Exactly the same as ‘distributed knowledge’

3 and 〈G〉 are the duals



Generalisation

For every non-empty subset G ⊆ Ag :

∼G =def
⋂
x∈G ∼x

altG(τ) =
⋂
x∈G altx(τ)

Axiomatisation:

2 type S5

[G] type S5

2ϕ → [G]ϕ (‘necessity’)

[G]ϕ → [H]ϕ (G ⊆ H) (‘superadditivity’)

[∅]ϕ ↔ 2ϕ

Exactly the same as ‘distributed knowledge’

3 and 〈G〉 are the duals



m

hm

ϕ ϕ ϕ

altmx — partition
∼x — equivalence relation

altx(τ) [τ ]∼x

[x]ϕ

¬ϕ

[dstit x]ϕ

[dstit x]ϕ =def [x]ϕ ∧ ¬2ϕ
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hm

ϕ ϕ ϕ

altmx — partition
∼x — equivalence relation

altx(τ) [τ ]∼x

[x]ϕ

¬ϕ

[dstit x]ϕ

[dstit x]ϕ =def [x]ϕ ∧ ¬2ϕ



Example

a
b

a
b

a
b

τ1

τ2

τ0

τ0 ∼b τ1

τ0 ∼a τ2

Possible actions by a: { {τ0, τ2}, {τ1} }
Possible actions by b: { {τ0, τ1}, {τ2} }



The (deliberative) stit

m

hm

ϕ ϕ ϕ

�
��altmx — partition

∼x — equivalence relation

����altx(τ) [τ ]∼x

Choicemx

Choicemx (τ)

[x]ϕ

¬ϕ

[dstit x]ϕ

And add ‘agent independence’ — a constraint on Choicemx .



stit-independence

‘. . . simultaneous actions by distinct agents must be
independent in the sense that the choices of one agent cannot
affect the choices available to another; at each moment, each
agent must be able to perform any of his available actions, no
matter which actions are performed at that moment by the
other agents.’ (Horty, 2001)

For all τ and all pairs of distinct agents x 6= y:

Choicemx (τ) ∩ Choicemy (τ) 6= ∅

For all τ and all distinct agents x, y, . . . z:

Choicemx (τ) ∩ Choicemy (τ) ∩ · · · ∩ Choicemz (τ) 6= ∅



Example (rooms)

a
b

a
b

a
b

τ1

τ2

τ0

τ0 ∼b τ1

τ0 ∼a τ2

Possible actions by a: { {τ0, τ2}, {τ1} }
Possible actions by b: { {τ0, τ1}, {τ2} }

No stit-independence: {τ1} ∩ {τ2} = ∅

Possible actions by {a, b}: { {τ0}, {τ1}, {τ2} }



stit-independence

|= (3[x1]ϕ1 ∧ . . . ∧ 3[xn]ϕn) → 3
(
[x1]ϕ1 ∧ . . . ∧ [xn]ϕn

)

|= [x][y]ϕ → 2ϕ for all x 6= y

|= ¬[dstit x][dstit y]ϕ for all x 6= y

More generally
|= [G ∩H]ϕ ↔ [G][H]ϕ



stit-independence: Rationale

A technical requirement, easily avoided, but also:

agency implies free choice ‘. . . a possible choice for an agent at a
moment should be considered as a real alternative for
the agent, i.e., the realization of that alternative is
exclusively up to the agent.’ (Xu)

simultaneous choices are independent ‘. . . the only way that the
choices open to one agent can depend on the choices
open to another agent is if the one agent’s choices lie
in the causal past of those of another agent.’
(Belnap and Perloff)



Abstract semantics

M = 〈W,∼, {∼x}x∈Ag , V 〉

∼x ⊆ ∼ equivalence relations on W

M, τ |= 2ϕ iff M, τ ′ |= ϕ for every τ ′ such that τ ∼ τ ′

M, τ |= [x]ϕ iff M, τ ′ |= ϕ for every τ ′ such that τ ∼x τ
′

a
b

a
b

a
b

τ1

moves(a)

τ2

moves(b)

τ0
τ0

τ1
moves(a)

τ2
moves(b)

b

a
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Example (‘Overdetermination’)

To detonate a certain bomb, either a or b must push their buttons.
Both push their buttons simultaneously and the bomb detonates
(k).

τ |= [dstit a]k

τ |= [dstit b]k

τ |= [a]k ∧ [b]k ∧ ¬2k

One can define

[dstit !x]ϕ =def [x]ϕ ∧ ¬[Agr{x}]ϕ



Collective/joint action (‘Underdetermination’)

For a different bomb both a and b must push their buttons
simultaneously.

Generalises naturally to groups (sets) of agents:

[dstit G]ϕ =def [G]ϕ ∧ ¬2ϕ

But (‘superadditivity’):

|= [dstit G]ϕ → [dstit G′]ϕ (G ⊆ G′)

|= [dstit G]ϕ → [dstit Ag ]ϕ

Ag is a finite set of (unique names for) agents.



‘Strictly stit’: Contributors and bystanders

τ |= ∆min
G ϕ iff G is a minimal non-empty set s.t. τ |= [G]ϕ

iff G is a minimal set s.t. τ |= [dstit G]ϕ

∆min
G corresponds to Belnap and Perloff’s ‘strictly stit’.

|= ∆min
G ϕ → [dstit G]ϕ

|= ∆min
{x}ϕ ↔ [dstit x]ϕ

τ |= ∆max
Gm ϕ iff Gm =

⋃
G{τ |= ∆min

G ϕ}

Gm are the contributors to ϕ at τ .
AgrGm are the ‘mere bystanders’ to ϕ at τ (Belnap and Perloff)

One can further distinguish ‘impotent bystanders’ to ϕ at τ and
define ΓGϕ.
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Example (‘Overdetermination’)

In order to detonate yet another bomb (k) any two of a b, c must
push their buttons simultaneously. All three push their buttons.

∆min
{a,b}k ∧ ∆min

{a,c}k ∧ ∆min
{b,c}k

∆max
{a,b,c}k

The Brexit referendum 2016

− [dstit Ag ]leave

− ΓG leave those entitled to vote

− ∆max
G leave leavers + abstainers

− ∆min
G leave
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Essential contributors

τ |= NessG ϕ iff τ |= [Ag ]ϕ ∧ ¬[AgrG]ϕ

τ |= Ness min
G ϕ iff G is a minimal set s.t. τ |= NessG ϕ

Cf. The ‘NESS’ test in law: “c is a necessary element in a set of
conditions sufficient for e”.

Proposition Suppose τ |= ∆max
Gm ϕ.

Gm =
⋃
G{τ |= Ness min

G ϕ } =
⋃
G{τ |= ∆min

G ϕ }

minimal necessary minimal sufficient
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Example: Bomb

Officer a: designated technicians {c, d}.
Officer b: designated technicians {c}.
To detonate this bomb, at least one officer and at least one of her
designated technicians must press their buttons simultaneously.

pushers ∆min
G k Ness min

G k ∆max
G k

(a, b, c, d) {a, c}, {a, d}, {b, c} {a, b}, {a, c}, {c, d} {a, b, c, d}
(a, b, c, ·) {a, c}, {b, c} {a, b}, {c} {a, b, c}
(a, b, ·, d) {a, d} {a}, {d} {a, d}
(a, ·, c, d) {a, c}, {a, d} {a}, {c, d} {a, c, d}
(a, ·, c, ·) {a, c} {a}, {c} {a, c}
(a, ·, ·, d) {a, d} {a}, {d} {a, d}
(·, b, c, d) {b, c} {b}, {c} {b, c}
(·, b, c, ·) {b, c} {b}, {c} {b, c}



Indeterminism and ‘chancy causation’

Agents a and b can throw a certain precious vase out of a window.
It might break or it might not. a throws the vase out the window
and it breaks (k). Who broke the vase?

τ 6|= [dstit a]k τ 6|= [a]k

Agents a and b can also move the vase between inside and outside.
If it is outside and it rains, the vase gets wet and is ruined. a
moves the vase outside. It rains. Who ruined the vase?



Vase (two agents)

out
¬rain
¬wet

out
rain
wet

in
¬rain
¬wet

in
rain
¬wet

τ ′0

τ0

τ ′a

τ ′b

τa

τb

τa |= [dstit a]out

τa 6|= [dstit a]wet τa 6|= [a]wet

τa 6|= 3[a]¬wet

τa |= 3[a, b]¬wet τa 6|= 3[a, b]wet



Two possible constructions

[x]ϕ — had x acted differently, it would have been ϕ
〈x〉ϕ — had x acted differently, it might have been ϕ

∼x =def ∼ r ∼x

Two constructions:

(1) ϕ ∧ [x]¬ϕ
(2) ϕ ∧ 〈x〉¬ϕ

(1) is hopeless if there is more than one agent.
(2) is mentioned by Ingmar Pörn (1977) but is too weak.

ϕ ∧ 3[x]¬ϕ does not work either



Chancy causation

But for a, all things being equal, it could have been different.

Suppose we fix the actions of all other agents (here b): b does not
move the vase

out
¬rain
¬wet

out
rain
wet

in
¬rain
¬wet

in
rain
¬wet

τ ′0

τ0

τ ′a

τa

fix b

In the transformed model:

fix(Agr{a}), τa |= wet ∧ 3[a]¬wet

Can we express this as a formula, without transforming the model?



Chancy causation

With actions of Gf fixed, G can guarantee ϕ

〈Gf 〉[G]ϕ no

〈Gf 〉[Gf ∪G]ϕ

With actions of AgrG fixed, G can guarantee ϕ

〈AgrG〉[(AgrG) ∪G]ϕ

〈AgrG〉[Ag ]ϕ

CouldG ϕ =def 〈AgrG〉[Ag ]ϕ

A kind of responsibility for ϕ:

ϕ ∧ CouldG ¬ϕ

(to be adjusted)
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out
¬rain
¬wet

out
rain
wet

in
¬rain
¬wet

in
rain
¬wet

τ ′0

τ0

τ ′a

τ ′b

τa

τb

τa ∼b τ0 τa ∼b τ
′
0 τa ∼b τ

′
a

τ0 |= [a, b]¬wet
τa |= 〈b〉[a, b]¬wet {b} = Agr{a} τa ∼b τ0

τa |= wet ∧ Could{a} ¬wet



CouldG ϕ =def 〈AgrG〉[Ag ]ϕ

But (‘superadditivity’):

|= CouldG ϕ → CouldG′ ϕ (G ⊆ G′)

Define:

τ |= Could min
G ϕ iff G is a minimal set s.t. τ |= CouldG ϕ

A kind of responsibility for ϕ:

ϕ ∧ Could min
G ¬ϕ



Faulty bomb

Ag = {a, b, c}. If a and b together, or c on its own, or all three
push their buttons then the bomb might detonate (k) or might not
(¬k); otherwise it will not detonate.

pushers

(a, b, c) k Could min
{a,c} ¬k Could min

{b,c} ¬k
(a, b, ·) k Could min

{a} ¬k Could min
{b} ¬k

(a, ·, c) k Could min
{c} ¬k

(·, b, c) k Could min
{c} ¬k

(·, ·, c) k Could min
{c} ¬k

(a, ·, ·) ¬k ∆min
{b,c}¬k Ness min

{b} ¬k Ness min
{c} ¬k

(·, b, ·) ¬k ∆min
{a,c}¬k Ness min

{a} ¬k Ness min
{c} ¬k

(·, ·, ·) ¬k ∆min
{a,c}¬k ∆min

{b,c}¬k Ness min
{a,b} ¬k Ness min

{c} ¬k

Cases where the bomb might detonate but does not are omitted.



Two kinds of responsibility or ‘causes’

When τ |= [Ag ]ϕ ∧ ¬2ϕ:

τ |= ∆max
Gm ϕ

Gm =
⋃
G{τ |= Ness min

G ϕ} =
⋃
G{τ |= ∆min

G ϕ}

When τ |= ϕ ∧ ¬2ϕ:

τ |= ϕ ∧ Could min
G ¬ϕ

How do they compare when τ |= [Ag ]ϕ ∧ ¬2ϕ?

|= [Ag ]ϕ →
(
CouldG ¬ϕ → NessG ϕ

)
|= [Ag ]ϕ →

(
Could min

G ¬ϕ → NessG ϕ
)

|= [Ag ]ϕ →
(
Could min

{x} ¬ϕ → Ness min
{x} ϕ

)
(x ∈ Ag)
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Chancy causation: Formulation 2

Formulation 1

ϕ ∧ CouldG ¬ϕ = ϕ ∧ 〈AgrG〉[Ag ]¬ϕ
With actions of AgrG fixed, Ag could have ensured ¬ϕ

Formulation 2

ϕ ∧ 3[Ag ]¬ϕ ∧ ¬〈G〉[Ag ]¬ϕ
Ag have a way of ensuring ¬ϕ but with actions of G fixed, Ag
have no way of ensuring ¬ϕ.

ϕ ∧ 3[Ag ]¬ϕ ∧ ¬〈G〉[Ag ]¬ϕ
ϕ ∧ ¬2〈Ag〉ϕ ∧ [G]〈Ag〉ϕ

ϕ ∧ [dstit G]〈Ag〉ϕ

and for minimal such

ϕ ∧ ∆min
G 〈Ag〉ϕ
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‘Chancy stits’

[G]εϕ =def ϕ ∧ [G]〈Ag〉ϕ

[dstit εG]ϕ =def ϕ ∧ [dstit G]〈Ag〉ϕ ([G]εϕ ∧ ¬2〈Ag〉ϕ)

∆ε-min
G ϕ =def ϕ ∧ ∆min

G 〈Ag〉ϕ

We know
⋃
G{τ |= ∆min

G 〈Ag〉ϕ} =
⋃
G{τ |= Ness min

G 〈Ag〉ϕ}

Lemma |= ϕ → ( CouldG ¬ϕ ↔ NessG〈Ag〉ϕ )

Proposition If τ |= ϕ then⋃
G{τ |= ∆ε-min

G ϕ} =
⋃
G{τ |= Could min

G ¬ϕ}
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Example: Firing squad

Suppose (pretend) {a, b, c, d, e, f, g, h} all fire simultaneously.

If every individual shot is guaranteed to be fatal:

∆min
{a}k ∧ ∆min

{b}k ∧ · · · ∧ ∆min
{h}k

∆max
{a,b,c,d,e,f,g,h}k

If every combination of three shots (say) is needed and guaranteed
to be fatal:

∆min
{a,b,c}k ∧ ∆min

{a,b,d}k ∧ · · · ∧ ∆min
{f,g,h}k

∆max
{a,b,c,d,e,f,g,h}k

If individual shots are not necessarily fatal but on this occasion it
happens that all of them were:

k ∧ Could min
{a,b,c,d,e,f,g,h} ¬k

∆ε-min
{a} k ∧ ∆ε-min

{b} k ∧ · · · ∧ ∆ε-min
{h} k
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Causal dependencies and stit

j stands on top of a high building. j may jump or not. If j jumps,
a sniper s may shoot j, or may not. s cannot shoot j if j does not
jump.

(j, s) k ∆min
{j}k, ∆min

{s}k

(j, ·) k ∆min
{j}k

(·, ·) ¬k ∆min
{j}¬k

(j, s) k ∆ε-min
{j} k, ∆ε-min

{s} k

(j, s)′ ¬k
(j, ·) k ∆ε-min

{j} k

(j, ·)′ ¬k
(·, ·) ¬k ∆min

{j}¬k

Deterministic Indeterministic

Other combinations (jumping guaranteed fatal, shooting not),
(shooting guaranteed fatal, jumping not) are also possible.



Example: jumper and screamer

s is not a sniper but a mere observer. If j jumps, s may scream in
alarm, or may not. s does not scream if j does not jump.

Same model!

(j, s) k ∆min
{j}k, ∆min

{s}k

(j, ·) k ∆min
{j}k

(·, ·) ¬k ∆min
{j}¬k

(j, s) k ∆ε-min
{j} k, ∆ε-min

{s} k

(j, s)′ ¬k
(j, ·) k ∆ε-min

{j} k

(j, ·)′ ¬k
(·, ·) ¬k ∆min

{j}¬k

In particular:

(j, s) |= ∆min
{s}k (j, s) |= ∆ε-min

{s} k

How can this be?
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alarm, or may not. s does not scream if j does not jump.

Same model!

(j, s) k ∆min
{j}k, ∆min

{s}k

(j, ·) k ∆min
{j}k

(·, ·) ¬k ∆min
{j}¬k

(j, s) k ∆ε-min
{j} k, ∆ε-min

{s} k

(j, s)′ ¬k
(j, ·) k ∆ε-min

{j} k

(j, ·)′ ¬k
(·, ·) ¬k ∆min

{j}¬k

In particular:

(j, s) |= ∆min
{s}k (j, s) |= ∆ε-min

{s} k

How can this be?



Example: jumper and screamer (modified)

j reacts to s not the other way round. j may jump or not, but a
scream from s always triggers a jump from j.

Same model again.

(j, s) k ∆min
{j}k, ∆min

{s}k

(j, ·) k ∆min
{j}k

(·, ·) ¬k ∆min
{j}¬k

(j, s) k ∆ε-min
{j} k, ∆ε-min

{s} k

(j, s)′ ¬k
(j, ·) k ∆ε-min

{j}
(j, ·)′ ¬k
(·, ·) ¬k ∆min

{j}¬k

In particular:

(j, s) |= ∆min
{s}k (j, s) |= ∆ε-min

{s} k

Seems reasonable now?



Not really so surprising . . .

In the example

|= ¬3(s:shouts ∧ ¬j:jumps)

And so:

|= 2(s:shouts → j:jumps)

|= 2(¬j:jumps → ¬s:shouts)

But of course these do not express causal connections’

And then e.g.
|= [s]ϕ → [j]ϕ

But that is not a causal connection either



Causal dependencies (perhaps)

Fix Gf ⊆ AgrG whose actions are not causally dependent on G.

〈Gf 〉[Gf ∪G]ϕ

If s depends on j:

(j, s) |= k ∧ 〈∅〉[j]¬k j responsible

(j, s) 6|= k ∧ 〈j〉[j, s]¬k

If j depends on s:

(j, s) 6|= k ∧ 〈s〉[j, s]¬k
(j, s) 6|= k ∧ 〈∅〉[s]¬k
(j, s) |= k ∧ 〈∅〉[j, s]¬k j, s jointly responsible

Perhaps this might work — but it does not fit in the stit semantics



The conclusion?

τ |= ∆ε-min
G ϕ and τ |= Could min

G ϕ express what we want if at τ
the actions of agents are causally independent.

stit-independence — all actions of distinct agents are causally
independent at all τ



Temporal refinement

jumper-screamer (jumps fatal)

¬k k

k

(·, ·)

(j, ·)
(·, s)

(·, ·)′

branches

(·, ·) ¬k
(j, ·) ; (·, s) k

(·, s) k
(j, ·) ; (·, ·)′ k

(·, ·)′ k

stit-independence at each branch point

(j, ·) ; (·, s) |= [j]k ∧ ¬2k ∧ ¬[s]k

(·, s) |= [s]k ∧ 2k



Temporal refinement

screamer-jumper (jumps fatal)

¬k

k

k

(·, ·)

(·, s) (j, ·)

(j, ·)′

branches

(·, ·) ¬k
(·, s) ; (j, ·) k

(j, ·) k
(j, ·)′ k

(j, ·)′ |= [j]k ∧ ¬2k
(·, s) ; (j, ·) |= [s]k ∧ ¬2k ∧ ¬[j]k

(j, ·) |= [j]k ∧ 2k

Details: many, many variations!!



Conclusion

I ∆min
G ϕ and Ness min

G ϕ

∆min
G 〈Ag〉ϕ and Could min

G ¬ϕ

I Causal dependencies are not modelled in stit

I Temporal extensions are essential, for many reasons.
There are many possible variations to be explored.

I Temporally refined models are not a panacea
Sometimes we treat sequential actions as if they were
simultaneous.

And then stit-independence is not wanted (in my opinion).

I stit can be extended with act types
That is essential anyway

(Is it then still stit ?)
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