

Counterfactual Explanations of (some) ML Models

SAPIENZA
UNIVERSITÀ DI ROMA

Fabrizio Silvestri

Introduction

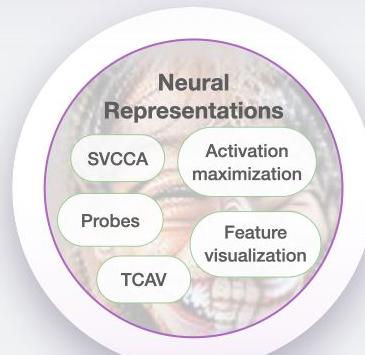
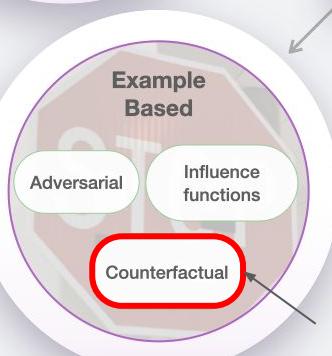
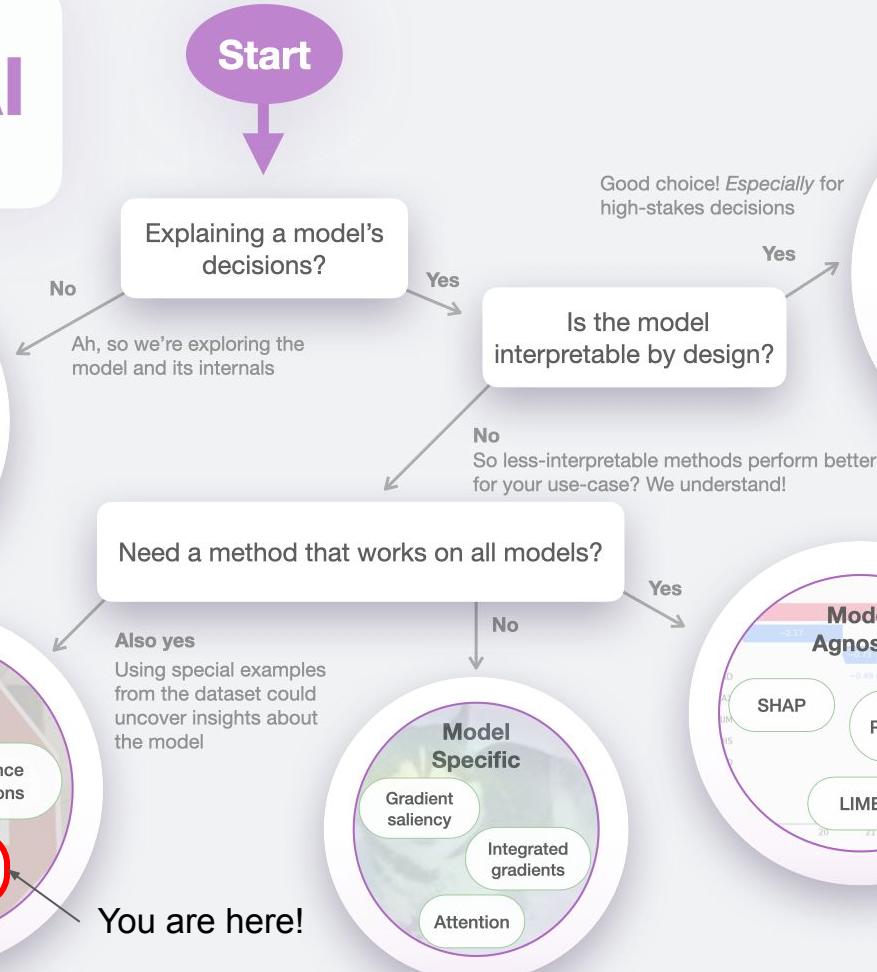
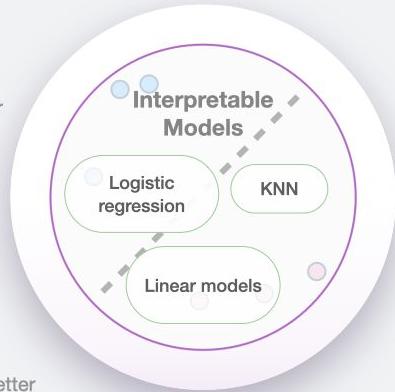
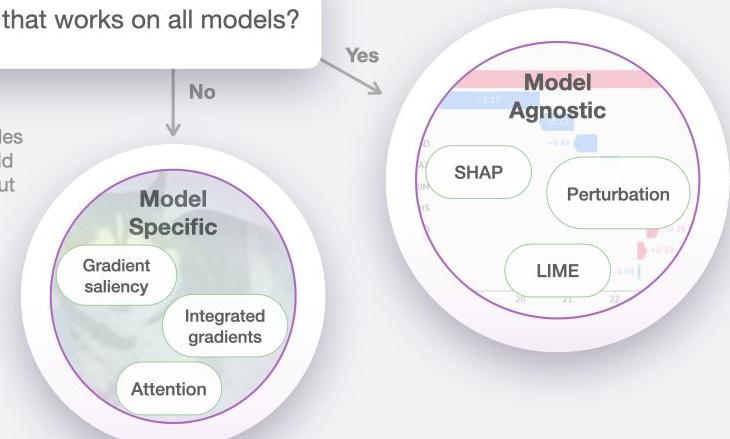
Explainable AI (XAI)

<https://medium.com/@BonsaiAI/what-do-we-want-from-explainable-ai-5ed12cb36c07>

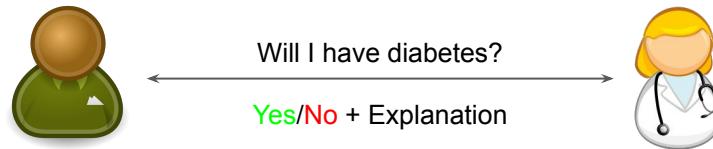
SAPIENZA
UNIVERSITÀ DI ROMA

Explainable AI

Cheat sheet ex.peggio.io v.0.2



Counterfactual Explanations



	Factual				
	Age	Gender	Exercise Level	Fat Level	
	45	M	Low	High	$f(\text{User}) = \text{Yes}$
	Age	Gender	Exercise Level	Fat Level	
Counterfactual	45	M	Medium	Average	$f(\text{User}) = \text{No}$

Explanation: You will not develop diabetes if you *lower* your **fat level** and you *increase* your **exercise level**.

Agenda

- Counterfactual Explanations for Random Forest Classifiers
- Counterfactual Explanations for Node Classifiers in GNNs
 - Motivations
 - Problem definition
 - Our solution
 - Experiments

Slides mostly based on:

Tolomei et al. Interpretable predictions of tree-based ensembles via actionable feature tweaking. *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining*. 2017.

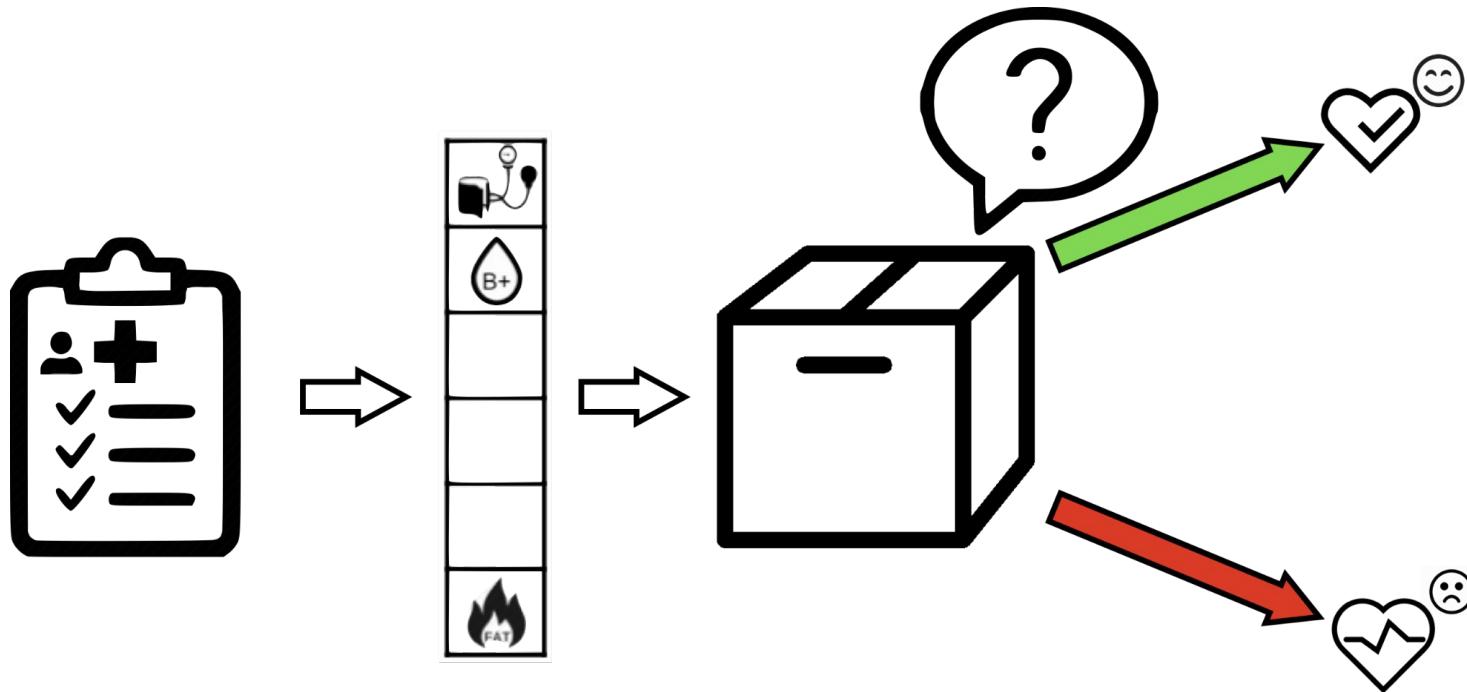
Patent Application:

Tolomei, G., Haines, A., Lalmas, M., & Silvestri, F. (2018). *U.S. Patent Application No. 15/444,912*.

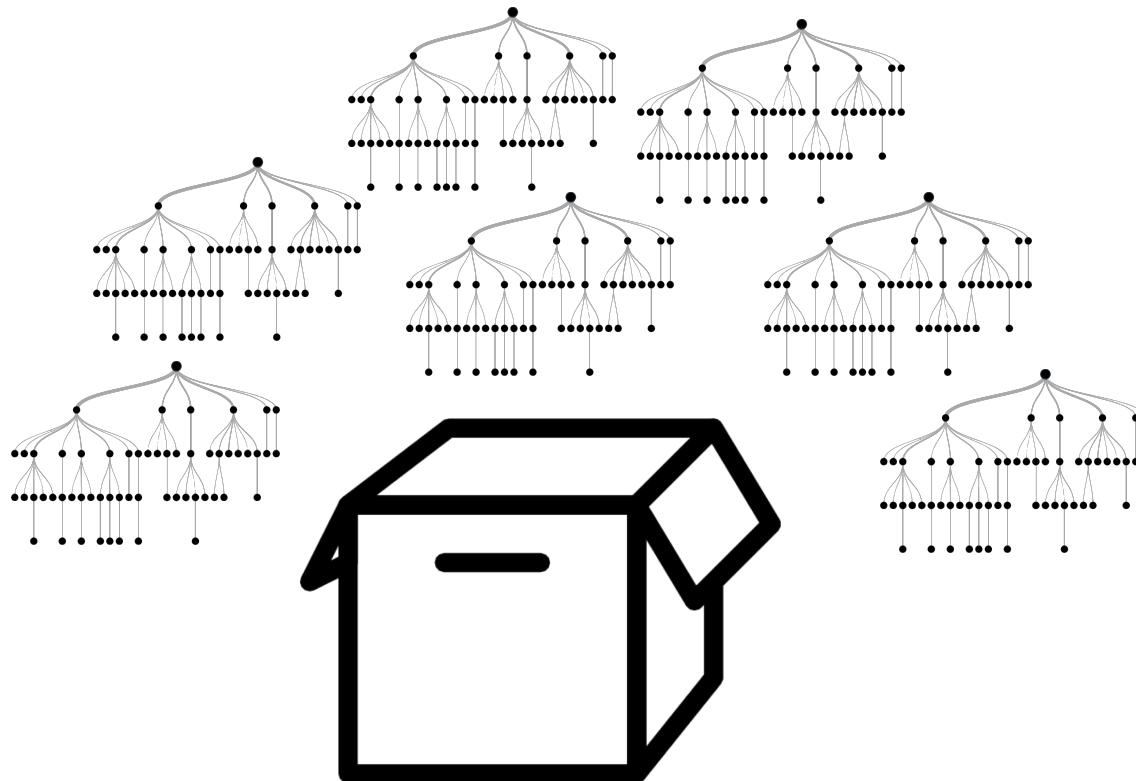
Generating Actionable Interpretations from Ensembles of Decision Trees

Tolomei & Silvestri. Generating Actionable Interpretations from Ensembles of Decision Trees. *IEEE Transactions on Knowledge and Data Engineering*. 2021.

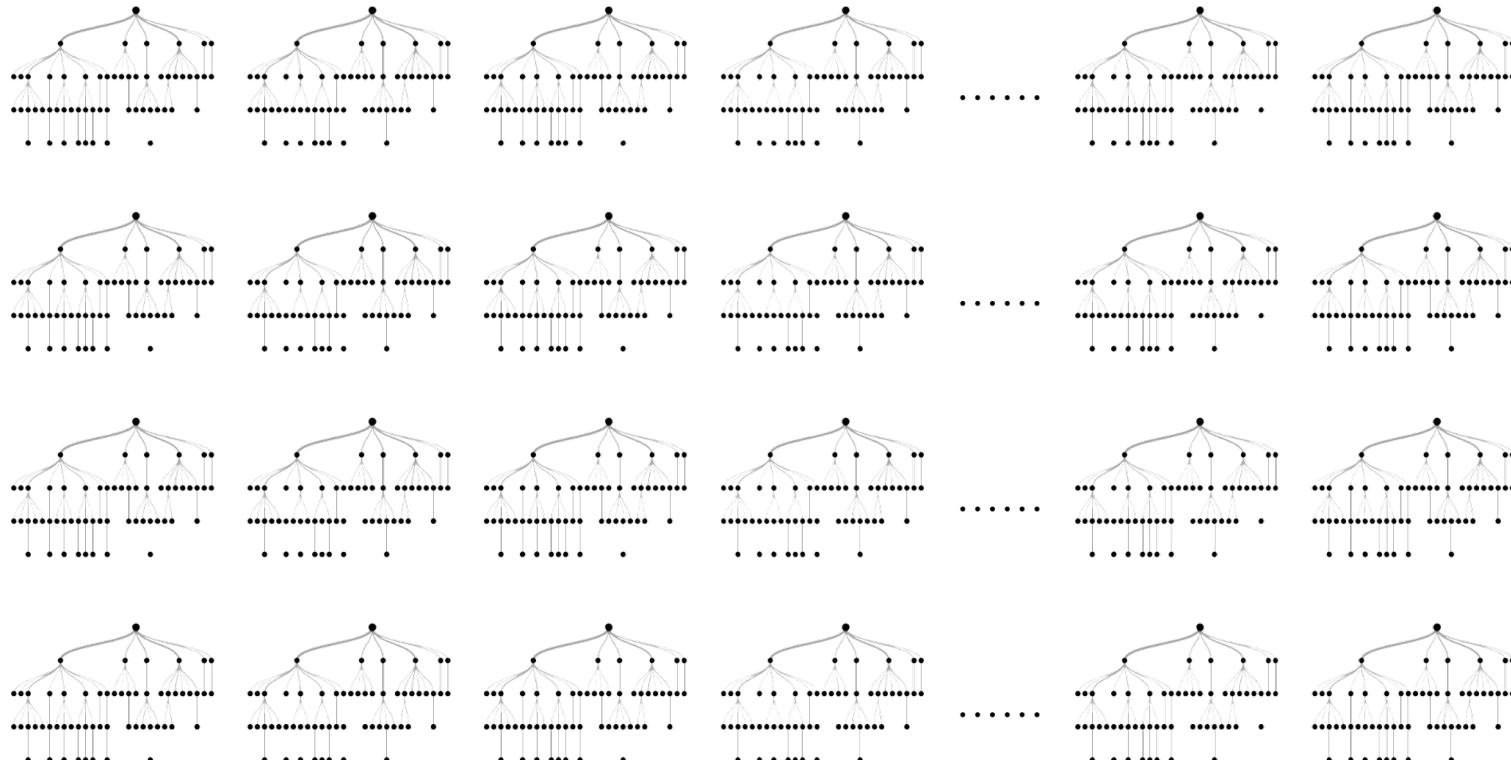
Predictive Models as Black Boxes



Let's Open the Black Box



Let's Open the Black Box



Preliminaries

- We focus on classification problems.
- Let $\mathbf{X} \subseteq \mathbb{R}_n$ be an n-dimensional vector space of real-valued features.
- $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ represents any objects we want to classify as a vector in \mathbf{X} .
- Each \mathbf{x} is associated with a binary class label $\{-1, +1\}$.

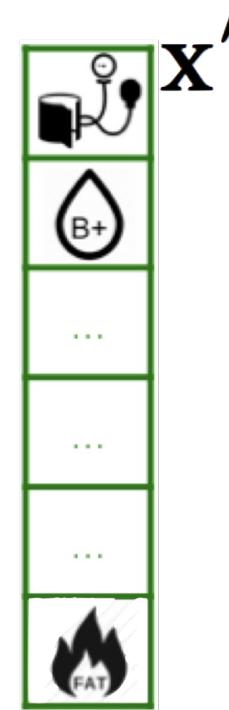
Preliminaries

- We are given a learnt function $f: X \rightarrow Y$ that we assume to be represented as an ensemble of K trees: $f = \phi(h_1, h_2, \dots, h_K)$
 - each $h_i: X \rightarrow Y$ is a base learner estimated on some samples of X .
- We assume the final predicted label is given by a majority voting approach, i.e., $\phi = \text{sign}(\text{sum}(h_i))$.

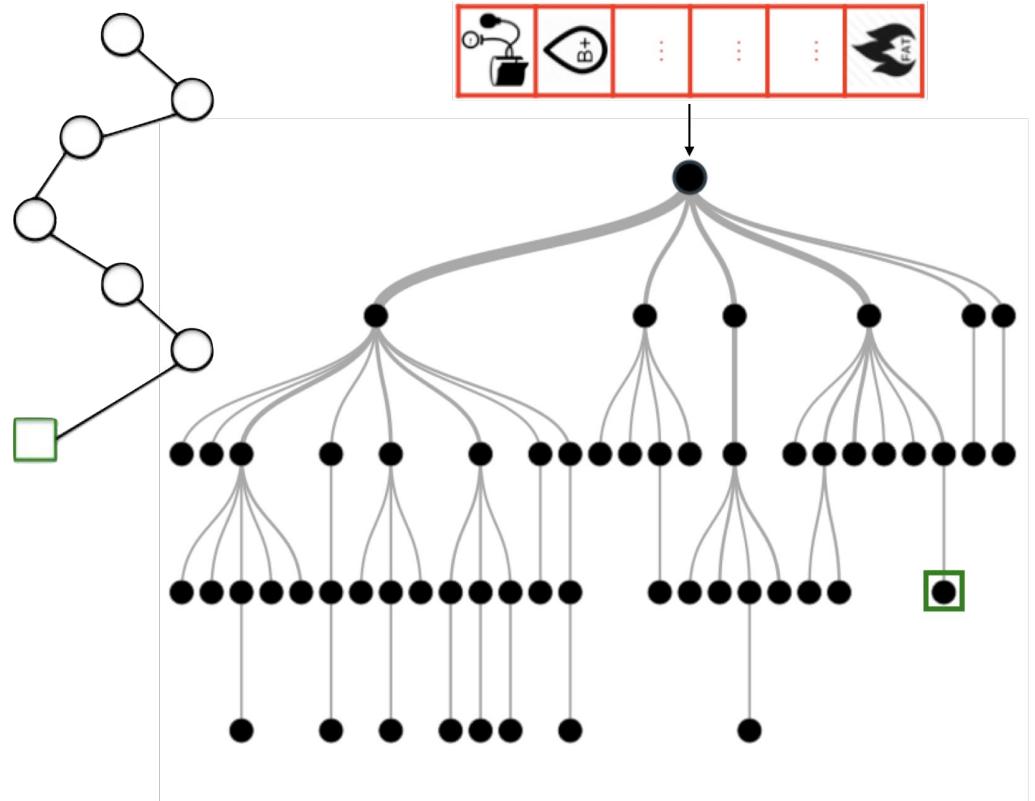
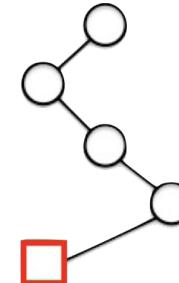
Problem Definition

$\delta : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a transformation cost function measuring the effort necessary to go from \mathbf{x} to \mathbf{x}' .

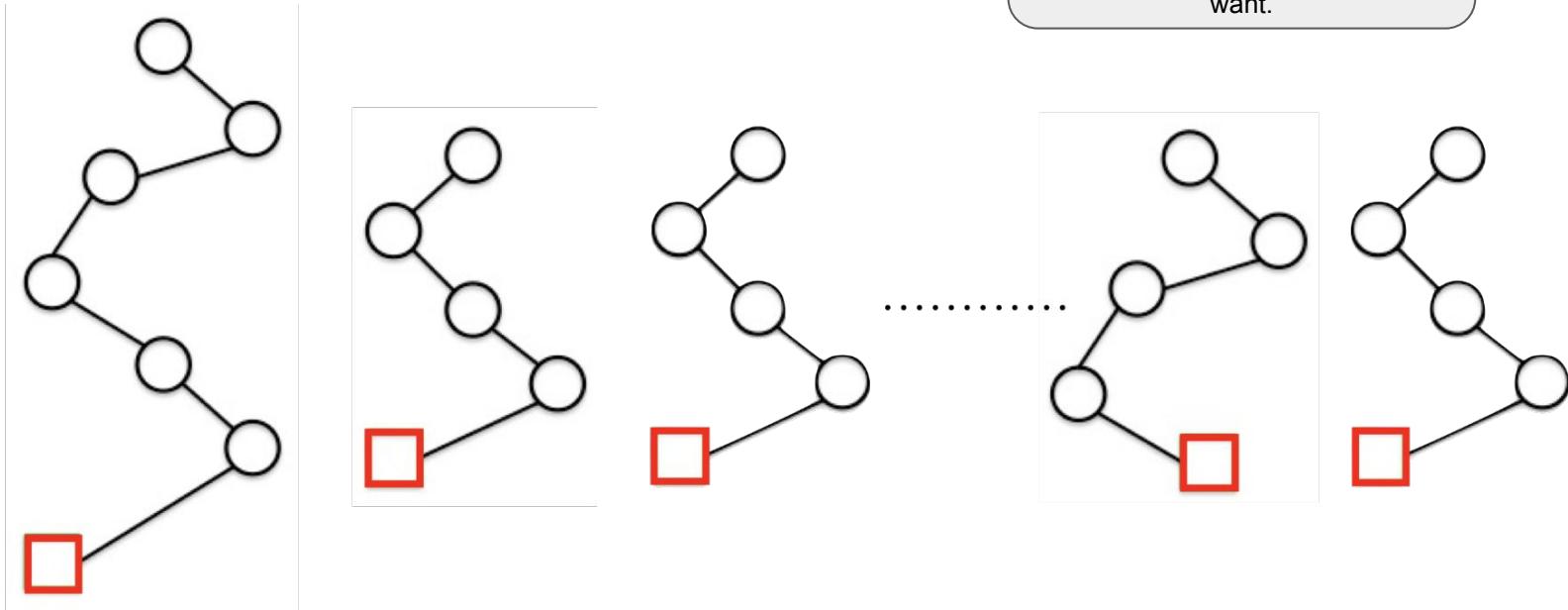
$$\mathbf{x}' = \arg \min_{\mathbf{x}^*} \left\{ \delta(\mathbf{x}, \mathbf{x}^*) \mid \hat{f}(\mathbf{x}) = -1 \wedge \hat{f}(\mathbf{x}^*) = +1 \right\}$$



Positive/Negative Paths

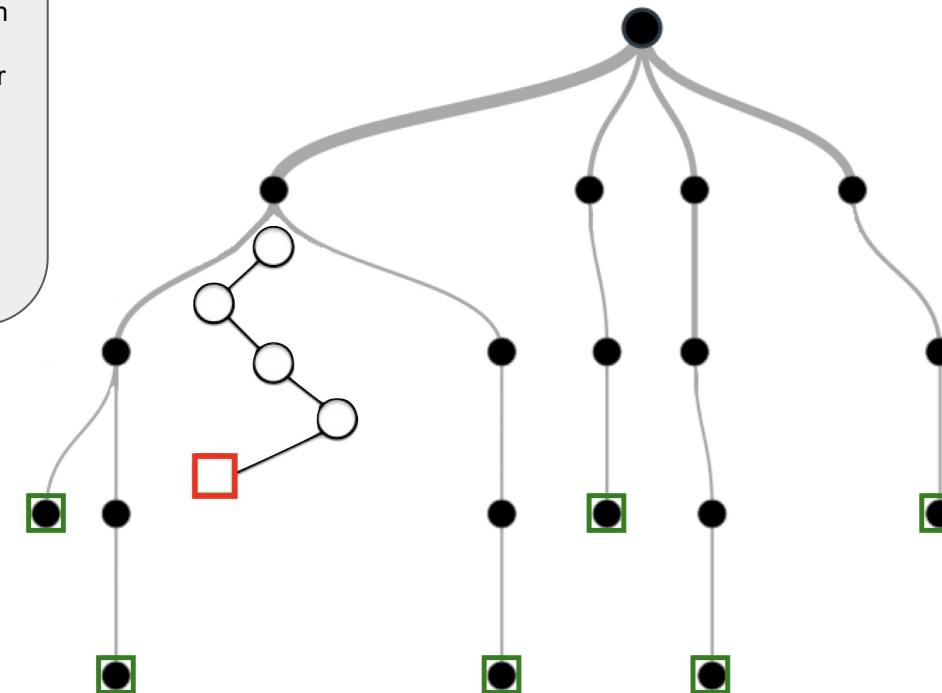


Positive/Negative Paths



Positive/Negative Paths

- We consider the set of positive paths in the tree T .
- We modify a negative instance in order to go through a positive path in T .
- Each feature is modified by at most ϵ .
- An instance meeting the ϵ constraint and satisfying the tree is called: ϵ -satisfactory.



Building ϵ -satisfactory Instances

- Let us consider a positive path as represented by the conditions from root to leaves

$$p_{k,j} = \{(x_1 \leq \theta_1), (x_2 \leq \theta_2), \dots, (x_n \leq \theta_n)\}$$

- for any (small) fixed $\epsilon > 0$, we build a positive feature vector x dimension-by-dimension as follows:

$$\begin{cases} \theta_i - \epsilon & \text{if the } i\text{-th condition is } (x_i \leq \theta_i) \\ \theta_i + \epsilon & \text{if the } i\text{-th condition is } (x_i > \theta_i) \end{cases}$$

Finding a Valid Tweaking

- For each positive path in our model we transform our input feature vector \mathbf{x} into the ε -satisfactory instance for that path.
- This leads us to a set of tweakings Γ_K associated with each tree T_k . The set of all tweakings is then given by $\Gamma = \bigcup \Gamma_K$
- The problem of feature tweaking then becomes that of finding:

$$\mathbf{x}^t = \operatorname{argmin}_{\mathbf{x}^+ \in \Gamma_K} \{\delta(\mathbf{x}, \mathbf{x}^+)\}$$

NP-Hard. Reduction
to DNF-MAXSAT

- Solution based on Spatial Indexes for logarithmic-time search

Experiments

- Random sample of 1,500 ads out of those served on mobile app by Yahoo Gemini during one month
- 50÷50 positive (**high quality**) vs. negative (**low quality**) instances using median dwell time (62.5 secs.) for labelling
- 80÷20 training/test splitting for learning a binary classifier (Decision Tree, GBDT, Random Forest)
- 10-fold cross validation on the training portion to select the best hyper-parameters for each model
- Eventually, the best-performing model on the test set (offline) is Random Forest with 1,000 trees and maximum depth = 16

Ad Quality Experiments

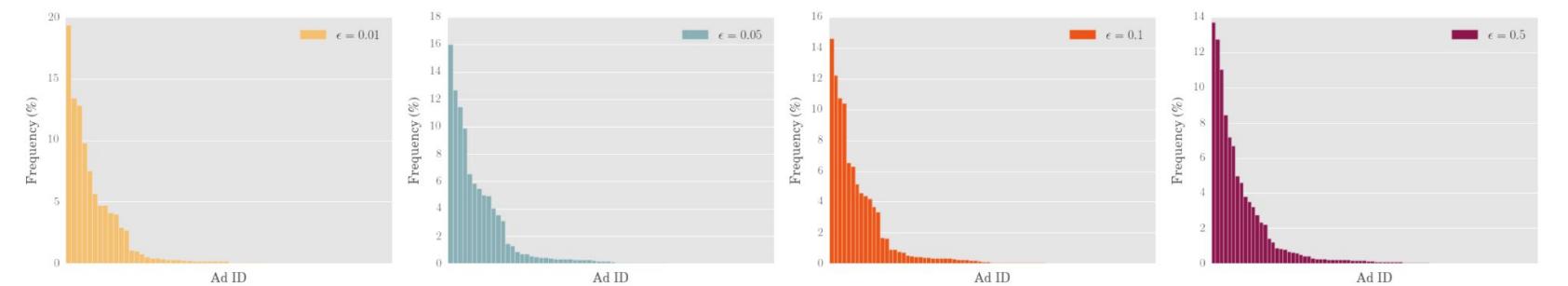
- A use case coming from a real need while working at Yahoo's Gemini Project
- How to suggest advertisers features to modify in order to have their ads being classified as "good-looking"?
- Classifier described in:
 - Barbieri, Silvestri, Lalmas: *Improving Post-Click User Engagement on Native Ads via Survival Analysis*. WWW 2016

Ads Features

Category	Source	Description
Language [†]	CR	This set of features capture the extent to which the text of the ad creative may include adult, violent, or spam content (e.g., ADULT_SCORE, HATE_SCORE, and SPAM_SCORE)
DOM	LP	This set of features are derived from the elements extracted from the HTML DOM of the ad landing page, such as the main textual content (LANDING_MAIN_TEXT_LENGTH), the total number of internal and external hyperlinks (LINKS_TOTAL_COUNT), the ratio of main text length to the total number of hyperlinks on the page (LINKS_MAIN_LENGTH_TOTAL_RATIO), etc.
Readability	CR-LP	These features range from a simple count of tokens (words) in the text of the ad creative and landing page to well-known scores for measuring the summarisability/readability of a text (e.g., READABILITY_SUMMARY_SCORE), etc.
Mobile Optimising	LP	This set of features describe the degree of mobile optimisation of the ad landing page by measuring the ability of it to be tuned to different screen sizes (VIEW_PORT), testing for the presence of a click-to-call button (CLICK_TO_CALL), etc.
Media	LP	These features refer to any media content displayed within the ad landing page, such as the number of images (NUM_IMAGES), etc.
Input	LP	This set of features represent all the possible input types available on the ad landing page, such as the number of checkboxes, drop-down menus, and radio buttons (NUM_INPUT_CHECKBOX, NUM_INPUT_DROPDOWN, NUM_INPUT_RADIO), etc.
Content & Similarity	CR-LP	These features extract the set of Wikipedia <i>entities</i> from the ad creative and landing page (NUM_CONCEPT_ANNOTATION), and measure the <i>Jaccard</i> similarity between those two sets (SIMILARITY_WIKI_IDS), etc.
History	LP	These features measure historical indicators, such as the median <i>dwell time</i> as computed from the last 28 days of observed ad clicks (HISTORICAL_DWELLTIME), and the <i>bounce rate</i> – i.e., the proportion of ad clicks whose dwell time is below 5 seconds (HISTORICAL_BOUNCE_RATE), etc.

Impact of ϵ

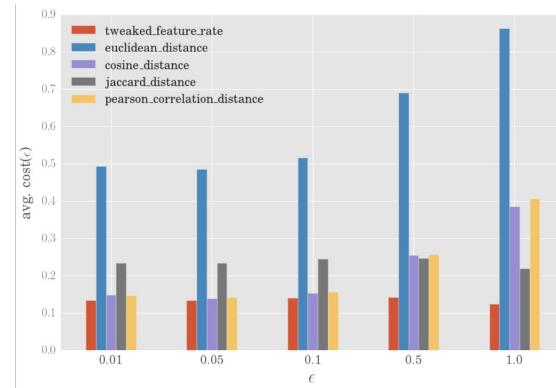
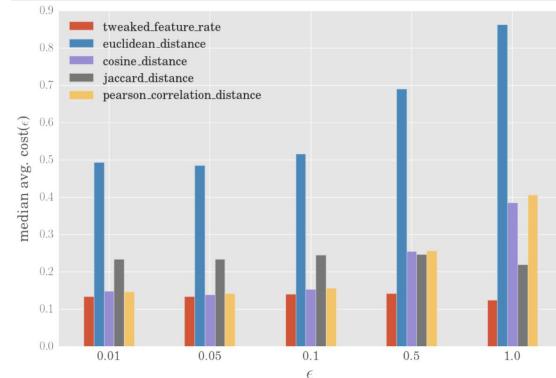
ϵ	0,01	0,05	0,10	0,50	1,00
ad coverage (%)	58,5	64,2	72,3	77,4	63,2



Distribution of per-ad ϵ -transformations

Impact of ϵ on cost δ

- **tweaked feature rate**:
 - proportion of features affected by the transformation of x into x' (range = [0, 1]);
- **euclidean distance**:
 - euclidean distance between x and x' (range = R);
- **cosine distance**:
 - 1 minus the cosine of the angle between x and x' (range = [0, 2]);
- **jaccard distance**:
 - one's complement of the Jaccard similarity between x and x' (range = [0, 1]);
- **pearson correlation distance**:
 - 1 minus the Pearson's correlation coefficient between x and x' (range = [0, 2]).

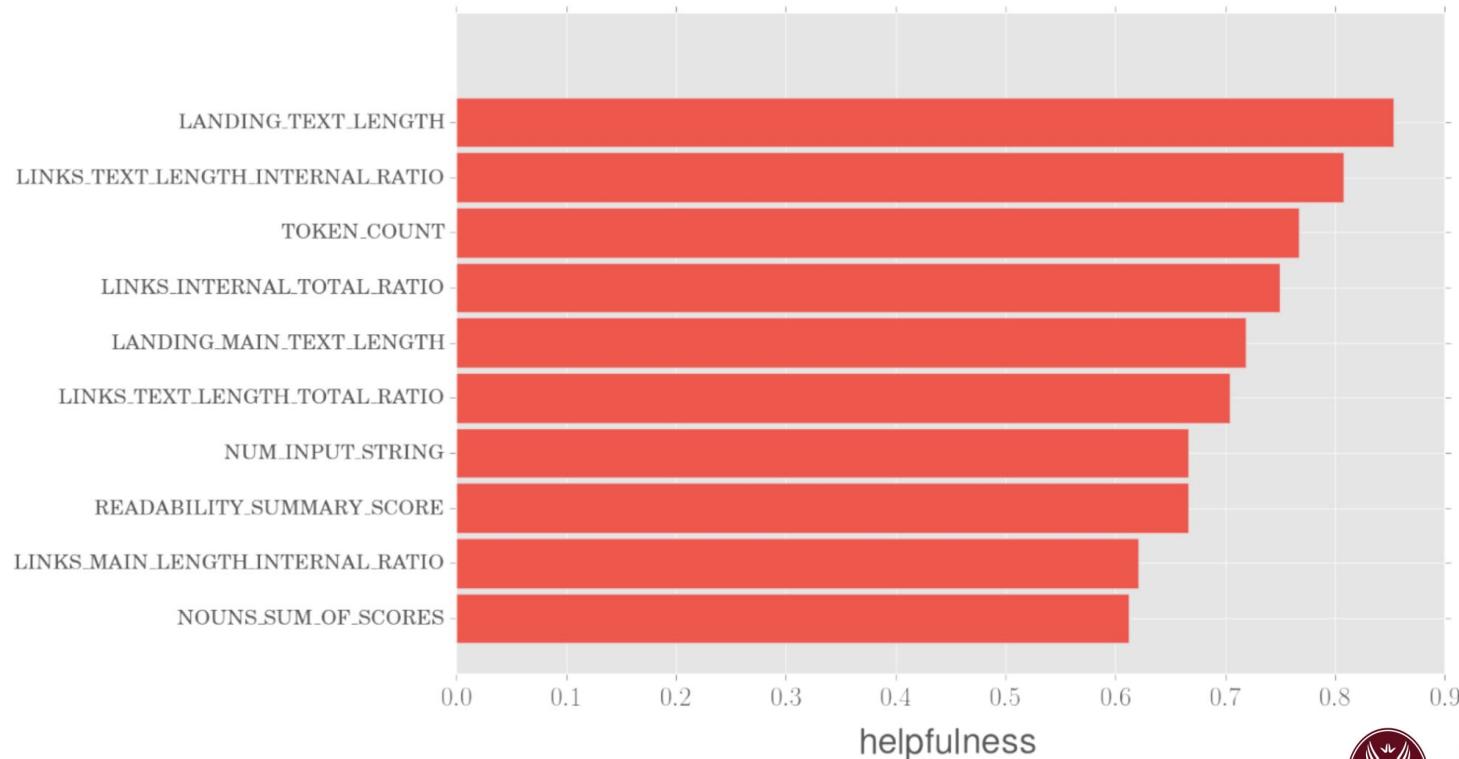


Qualitative Evaluation

- We asked a team of creative strategist to evaluate tweakings for 100 randomly selected ads that our classifier scored -1 (Bad Ads). Ratings:
 - *helpful, non-helpful, or non-actionable*
- 57.3% ↪ helpful (inter-agreement: 60.4%)
- 0.4% ↪ non-actionable suggestion.
- about 25% of the 42.3% non-helpful recommendations were considered “neutral”:
 - not hurting the user experience if discarded and not adding any positive value.

Features Helpfulness

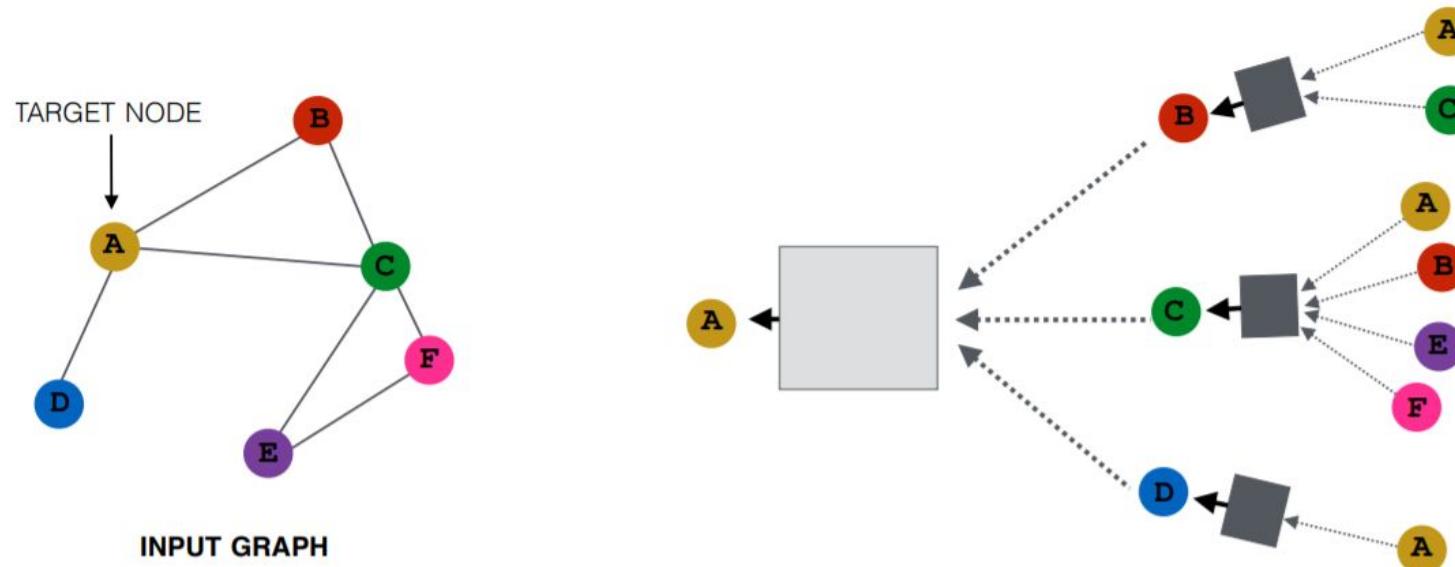
$$\text{helpfulness}(i) = \frac{|\text{helpful}(i)|}{|\text{helpful}(i)| + |\neg\text{helpful}(i)|}$$



CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks

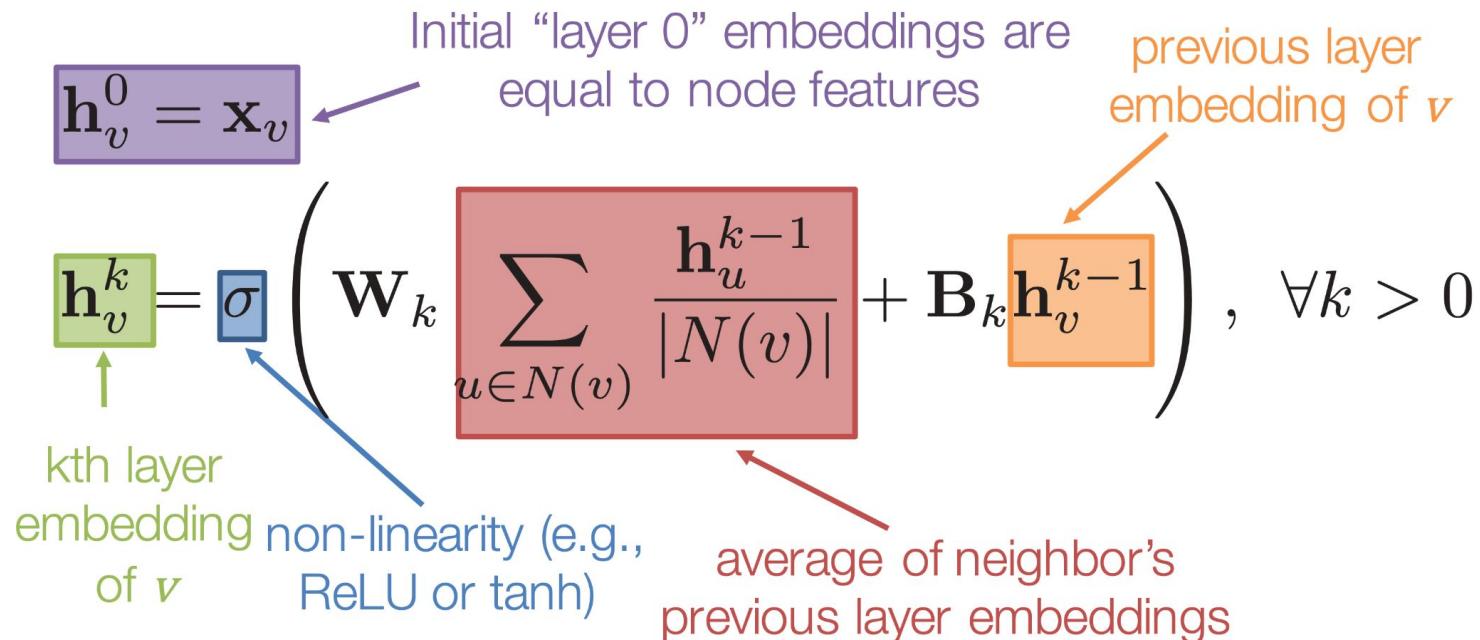
Lucic, A., ter Hoeve, M., Tolomei, G., de Rijke, M., & Silvestri, F. (2021). CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks. arXiv preprint arXiv:2102.03322.

Motivations: Graph Neural Networks



Courtesy of <https://heartbeat.fritz.ai/introduction-to-graph-neural-networks-c5a9f4aa9e99>

Graph Neural Networks for Node Classification

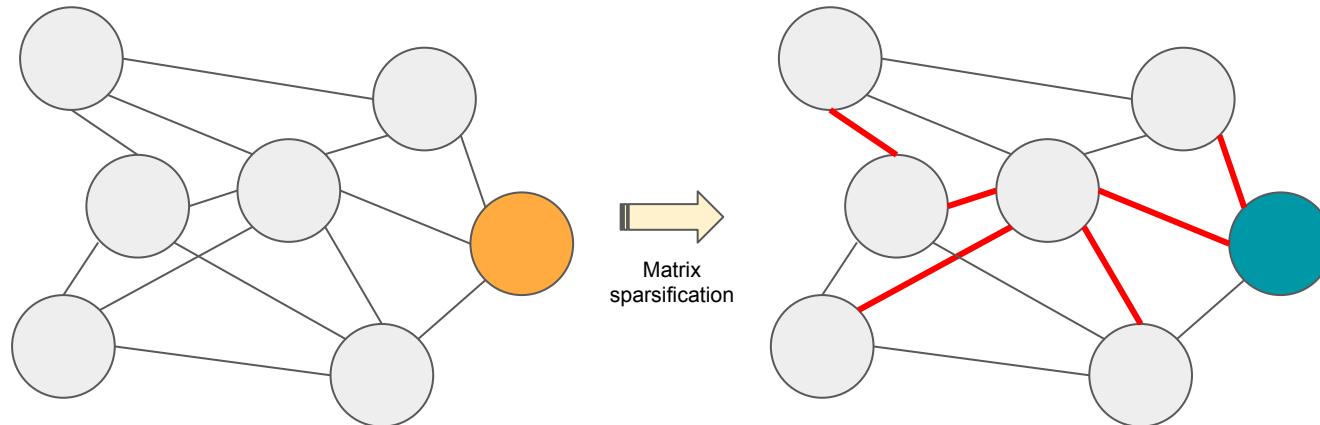


CF-Example for Graph NNs

- A CF example x^* for an instance x according to a trained classifier f is found by perturbing the features of x such that $f(x^*) \neq f(x)$
 - An optimal CF example x^o is one that minimizes the distance between the original instance and the CF example, according to some distance function d , and the resulting optimal CF explanation is $\Delta x^o = x^* - x$
- For graph data, it may not be enough to simply perturb node features, especially since they are not always available.

Counterfactual Explanations for Node Prediction

- The goal is to find the smallest subgraph that if removed the model will predict a different class for a node.



Adjacency Matrix Perturbation

- For a node v , we consider $G_v = (A_v, X_v)$
 - A_v is the restriction of A (the adjacency matrix) to the l -hop neighborhood of v (X_v) is the corresponding edge set.
- $A_v^* = P \odot A_v$
 - P is a perturbation matrix
- To generate P we first generate an intermediate real-valued P^* which we threshold in order to get P^*

An example for GCN

- We start from the traditional GCN formulation

$$f(A, X; W) = \text{softmax} \left[\tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} X W \right]$$

- We modify it to explicitly isolate A_v

$$f(A_v, X_v; W) = \text{softmax} \left[(D_v + I)^{-1/2} (A_v + I) (D_v + I)^{-1/2} X_v W \right]$$

- We define a new model g depending on P

$$g(A_v, X_v, W; P) = \text{softmax} \left[\tilde{D}_v^{-1/2} (P \odot A_v + I) \tilde{D}_v^{-1/2} X_v W \right]$$

CF-GNNExplainer

Algorithm 1 CF-GNNEXPLAINER: given a node $v = (A_v, x)$ where $f(v) = y$, generate the minimal perturbation, $\bar{v} = (\bar{A}_v, x)$, such that $f(\bar{v}) \neq y$.

Input: node $v = (x, A_v)$, trained GNN model f , CF model g , loss function \mathcal{L} , learning rate α , trade-off parameter β , number of iterations K , distance function d .

$f(v) = y$ # Get GNN prediction

$\hat{P} \leftarrow J_n$ # Initialization

for $k \in \text{range}(K)$ **do**

$v^{(k)} = \text{GET_CF_EXAMPLE}()$

$\mathcal{L} \leftarrow \mathcal{L}(v, \bar{v}^{(k)})$ # Eq 1 & Eq 5

$\hat{P} \leftarrow P^{(k)} + \alpha \nabla_{\hat{P}} \mathcal{L}$ # Update \hat{P}

end for

Function GET_CF_EXAMPLE()

$P \leftarrow \text{threshold}(\sigma(\hat{P}^{(k)}))$

$\bar{A}_v \leftarrow P \odot A_v$

$\bar{v}_{cand}^{(k)} \leftarrow (\bar{A}_v, x)$

if $f(v) \neq f(\bar{v}_{cand}^{(k)})$ **then**

$\bar{v}^{(k)} \leftarrow \bar{v}_{cand}^{(k)}$

if $\mathcal{L}_{dist}(v, \bar{v}) \leq \mathcal{L}_{dist}(v, \bar{v}^{(k)})$ **then**

$\bar{v}^* \leftarrow \bar{v}^{(k)}$ # Keep track of best CF

end if

end if

return \bar{v}^*

Experiments

- **Baselines:**
 - RANDOM
 - 1-HOP
 - All edges in the ego-graph
 - RM-1HOP
 - All edges **not** in the ego-graph
 - (Modified) GNNExplainer
- **Metrics**
 - Fidelity
 - Explanation Size
 - Sparsity
 - Accuracy

Datasets

- **TREE-CYCLES**
 - binary tree (base graph), with cycle-shaped motifs
- **TREE-GRIDS**
 - binary tree, with 3×3 grids as the motifs
- **BA-SHAPES**
 - Barabasi-Albert (BA) with house-shaped motifs, where each motif consists of 5 nodes (one for the top of the house, two in the middle, and two on the bottom).
- **Task:**
 - Node classification. Classes: not-in-motif, in-motif: top, middle, bottom.
- **Baseline Model (f) we want to explain:**
 - 3-layer GCN (hidden size = 20) for each task.
 - Our GCNs have at least 87% accuracy on the test set.

Experiments: Results

Metric	TREE-CYCLES				TREE-GRID				BA-SHAPES			
	<i>Fid.</i> ▼	<i>Size</i> ▼	<i>Spars.</i> ▲	<i>Acc.</i> ▲	<i>Fid.</i> ▼	<i>Size</i> ▼	<i>Spars.</i> ▲	<i>Acc.</i> ▲	<i>Fid.</i> ▼	<i>Size</i> ▼	<i>Spars.</i> ▲	<i>Acc.</i> ▲
RANDOM	0.00	4.70	0.79	0.63	0.00	9.06	0.75	0.77	0.00	503.31	0.58	0.17
1HOP	0.32	15.64	0.13	0.45	0.32	29.30	0.09	0.72	0.60	504.18	0.05	0.18
RM-1HOP	0.46	2.11	0.89	—	0.61	2.27	0.92	—	0.21	10.56	0.97	0.99
GNNEXP	0.55	6.00	0.57	0.46	0.34	8.00	0.68	0.74	0.81	6.00	0.81	0.27
CF-GNN	0.21	2.09	0.90	0.94	0.07	1.47	0.94	0.96	0.39	2.39	0.99	0.96

Experiments: Explanation Size

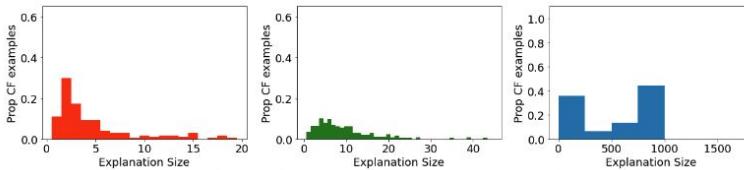


Figure 1: Histograms showing *Explanation Size* from RANDOM. Note the x-axis for BA-SHAPES goes up to 1500. Left: TREE-CYCLES, Middle: TREE-GRID, Right: BA-SHAPES.

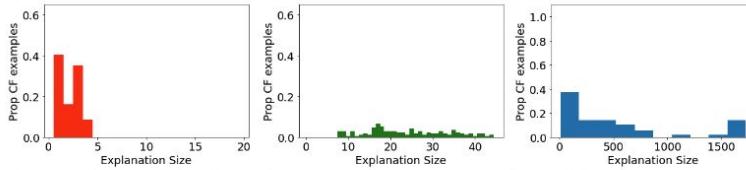


Figure 2: Histograms showing *Explanation Size* from 1HOP. Note the x-axis for BA-SHAPES goes up to 1500. Left: TREE-CYCLES, Middle: TREE-GRID, Right: BA-SHAPES.

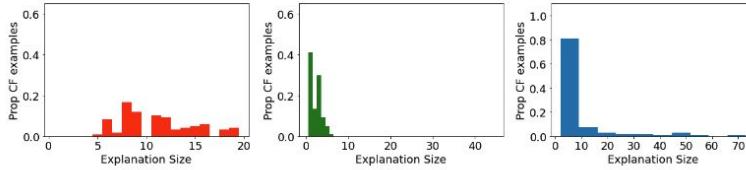


Figure 3: Histograms showing *Explanation Size* from RM-1HOP. Note the x-axis for BA-SHAPES goes up to 70. Left: TREE-CYCLES, Middle: TREE-GRID, Right: BA-SHAPES.

Experiments: Explanation Size

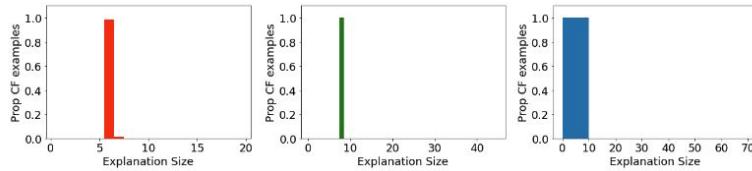


Figure 4: Histograms showing *Explanation Size* from GNNEXPLAINER. Note that the y-axis goes up to 1. Left: TREE-CYCLES, Middle: TREE-GRID, Right: BA-SHAPES.

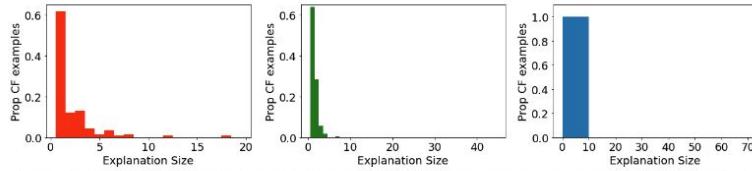


Figure 5: Histograms showing *Explanation Size* from CF-GNNEXPLAINER. Note the x-axis for BA-SHAPES goes up to 70. Left: TREE-CYCLES, Middle: TREE-GRID, Right: BA-SHAPES.

Conclusions and Future Directions

- Explaining the decisions of black-box models is of paramount importance.
 - Why didn't you finance my mortgage?
- We presented two pioneering works in those directions:
 - The first CF explanation model for an ensemble of trees
 - The first CF explanation model for GNNs
- Future work: Can we design a generic model-agnostic mechanism to explain a black box?
 - We are working on a RL-based solution that is able to tweak features until the prediction changes
 - Using an anomaly-detection model to train a generative model to transform an input until the label changes

