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Introduction



Explainable AI (XAI)

https://medium.com/@BonsaiAI/what-do-we-want-from-explainable-ai-5ed12cb36c07



You are here!



f(      ) = No

Counterfactual Explanations

Will I have diabetes?

Yes/No + Explanation

Age Gender Exercise 
Level

Fat Level

45 M Low High

f(      ) = Yes
Factual

Age Gender Exercise 
Level

Fat Level

45 M Medium Average

Counterfactual

Explanation: You will not develop diabetes if you lower 
your fat level and you increase your exercise level.



Agenda

● Counterfactual Explanations for Random Forest Classifiers
● Counterfactual Explanations for Node Classifiers in GNNs

○ Motivations
○ Problem definition
○ Our solution
○ Experiments



Generating Actionable Interpretations from 
Ensembles of Decision Trees

Tolomei & Silvestri. Generating Actionable 
Interpretations from Ensembles of Decision Trees. 
IEEE Transactions on Knowledge and Data 
Engineering. 2021.

Slides mostly based on:
Tolomei et al. Interpretable predictions of tree-based ensembles via actionable feature 
tweaking. Proceedings of the 23rd ACM SIGKDD international conference on knowledge 
discovery and data mining. 2017.

Patent Application:
Tolomei, G., Haines, A., Lalmas, M., & Silvestri, F. (2018). U.S. Patent Application No. 
15/444,912.



Predictive Models as Black Boxes



Let’s Open the Black Box



Let’s Open the Black Box



Preliminaries

● We focus on classification problems.
● Let X ⊆ Rn be an n-dimensional vector space of real-valued features.
● x = [x1, x2, . . . , xn]

T represents any objects we want to classify as a vector in 
X.

● Each x is associated with a binary class label {-1, +1}.



Preliminaries

● We are given a learnt function f: X→Y that we assume to be represented as 
an ensemble of K trees: f = ɸ(h1, h2, ..., hK)

○ each hi: X→Y is a base learner estimated on some samples of X.
● We assume the final predicted label is given by a majority voting approach, 

i.e., ɸ = sign(sum(hi)).



Problem Definition



Positive/Negative Paths



Positive/Negative Paths We can skip all the trees 
containing the positive paths, as 
these are already encoding the 

(positive) prediction we ultimately 
want.



Positive/Negative Paths

● We consider the set of positive paths in 
the tree T.

● We modify a negative instance in order 
to go through a positive path in T.

● Each feature is modified by at most ε.
● An instance meeting the ε constraint 

and satisfying the tree is called: 
ε-satisfactory.



Building ε-satisfactory Instances

● Let us consider a positive path as represented by the conditions from root to 
leaves

● for any (small) fixed ε > 0, we build a positive feature vector x+ 
dimension-by-dimension as follows:



Finding a Valid Tweaking

● For each positive path in our model we transform our input feature vector x 
into the ε-satisfactory instance for that path.

● This leads us to a set of tweakings 𝜞K associated with each tree Tk. The set of 
all tweakings is then given by 𝜞=⋃ 𝜞K

● The problem of feature tweaking then becomes that of finding:

● Solution based on Spatial Indexes for logarithmic-time search

NP-Hard. Reduction 
to DNF-MAXSAT



Experiments

● Random sample of 1,500 ads out of those served on mobile app by Yahoo 
Gemini during one month

● 50÷50 positive (high quality) vs. negative (low quality) instances using median 
dwell time (62.5 secs.) for labelling

● 80÷20 training/test splitting for learning a binary classifier (Decision Tree, 
GBDT, Random Forest)

● 10-fold cross validation on the training portion to select the best 
hyper-parameters for each model

● Eventually, the best-performing model on the test set (offline) is Random 
Forest with 1,000 trees and maximum depth = 16



Ad Quality Experiments

● A use case coming from a real need while working at Yahoo's Gemini Project
● How to suggest advertisers features to modify in order to have their ads being classified as 

"good-looking"?
● Classifier described in:

○ Barbieri, Silvestri, Lalmas: Improving Post-Click User Engagement on Native Ads via Survival Analysis. WWW 2016



Ads Features



Impact of ε



Impact of ε on cost 𝛿

● tweaked feature rate:
○ proportion of features affected by the transformation of x into 

x' (range = [0, 1]);
● euclidean distance:

○ euclidean distance between x and x' (range = R);
● cosine distance:

○ 1 minus the cosine of the angle between x and x' (range = [0, 
2]);

● jaccard distance:
○ one’s complement of the Jaccard similarity between x and x' 

(range = [0, 1]);
● pearson correlation distance:

○ 1 minus the Pearson’s correlation coefficient between x and 
x' (range = [0, 2]).



Qualitative Evaluation

● We asked a team of creative strategist to evaluate tweakings for 100 
randomly selected ads that our classifier scored -1 (Bad Ads). Ratings:

○ helpful, non-helpful, or non-actionable

● 57.3% ↦ helpful (inter-agreement: 60.4%)
● 0.4% ↦ non-actionable suggestion.
● about 25% of the 42.3% non-helpful recommendations were considered 

“neutral”:
○ not hurting the user experience if discarded and not adding any positive value.



Features Helpfulness



CF-GNNExplainer: Counterfactual Explanations
for Graph Neural Networks

Lucic, A., ter Hoeve, M., Tolomei, G., de Rijke, M., 
& Silvestri, F. (2021). CF-GNNExplainer: 
Counterfactual Explanations for Graph Neural 
Networks. arXiv preprint arXiv:2102.03322.



Motivations: Graph Neural Networks

Curtesy of https://heartbeat.fritz.ai/introduction-to-graph-neural-networks-c5a9f4aa9e99



Graph Neural Networks for Node Classification

Curtesy of http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf



CF-Example for Graph NNs

● A CF example x* for an instance x according to a trained classifier f is found 
by perturbing the features of x such that f(x*) != f(x)

○ An optimal CF example xo is one that minimizes the distance between the original instance 
and the CF example, according to some distance function d, and the resulting optimal CF 
explanation is ∆xo = x* − x

● For graph data, it may not be enough to simply perturb node features, 
especially since they are not always available.



Counterfactual Explanations for Node Prediction

● The goal is to find the smallest subgraph that if removed the model will predict 
a different class for a node.

Matrix 
sparsification

original Counterfactual model



Adjacency Matrix Perturbation

● For a node v, we consider Gv=(Av, Xv)
○ Av is the restriction of A (the adjacency matrix) to the l-hop neighborhood of v (Xv) is the 

corresponding edge set.
● Av* = P ⊙ Av

○ P is a perturbation matrix
● To generate P we first generate an intermediate real-valued P* which we 

threshold in order to get P*



An example for GCN

● We start from the traditional GCN formulation

● We modify it to explicitly isolate Av

● We define a new model g depending on P



CF-GNNExplainer



Experiments

● Baselines:
○ RANDOM
○ 1-HOP

■ All edges in the ego-graph
○ RM-1HOP

■ All edges *not* in the ego-graph
○ (Modified) GNNExplainer

● Metrics
○ Fidelity
○ Explanation Size
○ Sparsity
○ Accuracy



Datasets

● TREE-CYCLES
○ binary tree (base graph), with cycle-shaped motifs

● TREE-GRIDS
○ binary tree, with 3×3 grids as the motifs

● BA-SHAPES
○ Barabasi-Albert (BA) with house-shaped motifs, where each motif consists of 5 nodes (one for 

the top of the house, two in the middle, and two on the bottom).
● Task:

○ Node classification. Classes: not-in-motif, in-motif: top, middle, bottom.
● Baseline Model (f) we want to explain:

○ 3-layer GCN (hidden size = 20) for each task.
○ Our GCNs have at least 87% accuracy on the test set.



Experiments: Results



Experiments: Explanation Size



Experiments: Explanation Size



Conclusions and Future Directions

● Explaining the decisions of black-box models is of paramount importance.
○ Why didn’t you finance my mortgage?

● We presented two pioneering works in those directions:
○ The first CF explanation model for an ensemble of trees
○ The first CF explanation model for GNNs

● Future work: Can we design a generic model-agnostic mechanism to explain 
a black box?

○ We are working on a RL-based solution that is able to tweak features until the prediction 
changes

○ Using an anomaly-detection model to train a generative model to transform an input until the 
label changes


