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Counterfactual Explanations

Will | have diabetes? p
Yes/No + Explanation

Factual Age Gender Exercise Fat Level
Level
& f( &)= Yes
45 M Low High
Counterfactual Age Gender | Exercise | FatLevel
Level
& (&) =No
45 M Medium Average

Explanation: You will not develop diabetes if you lower
your fat level and you increase your exercise level.
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Agenda

e Counterfactual Explanations for Random Forest Classifiers
e Counterfactual Explanations for Node Classifiers in GNNs

Motivations
Problem definition
Our solution
Experiments
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Slides mostly based on:

Tolomei et al. Interpretable predictions of tree-based ensembles via actionable feature
tweaking. Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 2017.

Patent Application:
Tolomei, G., Haines, A., Lalmas, M., & Silvestri, F. (2018). U.S. Patent Application No.
15/444,912.

Generating Actionable Interpretations from
Ensembles of Decision Trees

Tolomei & Silvestri. Generating Actionable
Interpretations from Ensembles of Decision Trees.
IEEE Transactions on Knowledge and Data
Engineering. 2021.



Predictive Models as Black Boxes
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Let’'s Open the Black Box
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Preliminaries

e We focus on classification problems.

e LetX & R be an n-dimensional vector space of real-valued features.

® X=[X,X, ..., xn]T represents any objects we want to classify as a vector in
X.

e Each x is associated with a binary class label {-1, +1}.
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Preliminaries

e \We are given a learnt function f: X—Y that we assume to be represented as

an ensemble of K trees: f = ¢(h,, h,, ..., h,)
o each h: X—Y is a base learner estimated on some samples of X.

e \We assume the final predicted label is given by a majority voting approach,
i.e., ¢ = sign(sum(h.)).
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Problem Definition

X

x' = argznin {5(x, x*) | f(x) = -1 A f(x*) = +1}

6 : X XX — R is atransformation cost
function measuring the effort necessary to
go from x to x'.
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Positive/Negative Paths
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Positive/Negative Paths

We can skip all the trees
containing the positive paths, as
these are already encoding the

(positive) prediction we ultimately
want.
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Positive/Negative Paths

a N

e We consider the set of positive paths in .
the tree T.

e We modify a negative instance in order
to go through a positive path in T.

e Each feature is modified by at most €.

e An instance meeting the € constraint
and satisfying the tree is called: 4 ® ® ®
e-satisfactory.
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Building e-satisfactory Instances

e Let us consider a positive path as represented by the conditions from root to
leaves

Pi,j = {(x1 S 01),(x2 S ), ..., (xn < On)}

e for any (small) fixed € > 0, we build a positive feature vector x+
dimension-by-dimension as follows:

0; — e if the i-th condition is (x; < 6;)
0; + € if the i-th condition is (x; > 60;)
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Finding a Valid Tweaking

e For each positive path in our model we transform our input feature vector x
into the e-satisfactory instance for that path.

e This leads us to a set of tweakings I', associated with each tree T,. The set of
all tweakings is then given by I'=UT",

e The problem of feature tweaking then becomes that of finding:

X+t e Ik

x' = argmin {8(x, x*)} [

NP-Hard. Reduction
to DNF-MAXSAT

e Solution based on Spatial Indexes for logarithmic-time search
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Experiments

e Random sample of 1,500 ads out of those served on mobile app by Yahoo
Gemini during one month

e 50+50 positive (high quality) vs. negative (low quality) instances using median
dwell time (62.5 secs.) for labelling

e 80+20 training/test splitting for learning a binary classifier (Decision Tree,
GBDT, Random Forest)

e 10-fold cross validation on the training portion to select the best
hyper-parameters for each model

e Eventually, the best-performing model on the test set (offline) is Random
Forest with 1,000 trees and maximum depth = 16
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Ad Quality Experiments

A use case coming from a real need while working at Yahoo's Gemini Project
How to suggest advertisers features to modify in order to have their ads being classified as
"good-looking"?

e Classifier described in:
o  Barbieri, Silvestri, Lalmas: Improving Post-Click User Engagement on Native Ads via Survival Analysis. WWW 2016

Exclusive: New 'skinny'
pill takes country by
storm. A mother from the
U.K. broke the world
record and lost 2.4 stone

in 4 weeks !
This mprt was crste by Haaty Mum Dy o axpose
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Ads Features

Category

Source

Description

Language*

CR

This set of features capture the extent to which the text of the ad creative may include adult,
violent, or spam content (e.g., ADULT_SCORE, HATE_SCORE, and SPAM_SCORE)

DOM

LP

This set of features are derived from the elements extracted from the HTML DOM of the ad
landing page, such as the main textual content (LANDING_MAIN_TEXT_LENGTH), the total
number of internal and external hyperlinks (LINKS_TOTAL_COUNT), the ratio of main text
length to the total number of hyperlinks on the page
(LINKS_.MAIN_LENGTH_TOTAL_RATIO), etc.

Readability

CR-LP

These features range from a simple count of tokens (words) in the text of the ad creative and
landing page to well-known scores for measuring the summarisability/readability of a text
(e.g., READABILITY_SUMMARY_SCORE), etc.

Mobile Optimising

LP

This set of features describe the degree of mobile optimisation of the ad landing page by
measuring the ability of it to be tuned to different screen sizes (VIEW_PORT), testing for the
presence of a click-to-call button (CLICK_TO_CALL), etc.

Media

LP

These features refer to any media content displayed within the ad landing page, such as the
number of images (NUM_IMAGES), etc.

Input

LP

This set of features represent all the possible input types available on the ad landing page,
such as the number of checkboxes, drop-down menus, and radio buttons
(NUM_INPUT_CHECKBOX, NUM_INPUT_DROPDOWN, NUM_INPUT_RADIO), etc.

Content & Similarity

CR-LP

These features extract the set of Wikipedia entities from the ad creative and landing page
(NUM_CONCEPT_ANNOTATION), and measure the Jaccard similarity between those two
sets (SIMILARITY_WIKI_IDS), etc.

History

LP

These features measure historical indicators, such as the median dwell time as computed
from the last 28 days of observed ad clicks (HISTORICAL_DWELLTIME), and the bounce rate
- i.e, the proportion of ad clicks whose dwell time is below 5 seconds
(HISTORICAL BOUNCE_RATE), etc.
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Impact of €

£ 0,01 005 010 050 = 1,00
ad coverage (%) 58,5 642 723 77,4 63,2
0 | |i|“|||||lhllu- .......... ( ‘ —

Distribution of per-ad e-transformations
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Impact of € on cost

e tweaked feature rate:
o proportion of features affected by the transformation of x into
x' (range = [0, 1]);
e euclidean distance:
o euclidean distance between x and x' (range = R);
e cosine distance:
o 1 minus the cosine of the angle between x and x' (range = [0,
2]);
e jaccard distance:
o one’s complement of the Jaccard similarity between x and x'
(range = [0, 1]);
e pearson correlation distance:

o 1 minus the Pearson’s correlation coefficient between x and
x' (range =[O0, 2]).

avg. cost(c)

median avg. cost(c)

B tweaked feature rate
5 W euclidean distance
WS cosine_distance
. W jaccard.distance
' pearson_correlation_distance

6
0.5
04 |
0.3
02
0.1
0.0 | J‘ ]I
0.01 0.05 0.1 0.5
€

B tweaked feature rate

(s mm euclidean distance

WS cosine_distance

. W jaccard_distance

pearson_correlation_distance
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Qualitative Evaluation

e \We asked a team of creative strategist to evaluate tweakings for 100

randomly selected ads that our classifier scored -1 (Bad Ads). Ratings:
o helpful, non-helpful, or non-actionable

e 57.3% ~ helpful (inter-agreement: 60.4%)
e 0.4% ~ non-actionable suggestion.
e about 25% of the 42.3% non-helpful recommendations were considered

“neutral”:
o not hurting the user experience if discarded and not adding any positive value.
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Features Helpfulness

|helpful(i)|
|helpful(i)| + |=helpful()|

helpfulness(i) =

LANDING.TEXT LENGTH

LINKS_TEXT_LENGTH_INTERNAL_RATIO

TOKEN_COUNT

LINKS_INTERNAL_TOTAL_RATIO

LANDING_MAIN_TEXT_LENGTH

LINKS_ TEXT LENGTH_TOTAL_RATIO

NUM_INPUT.STRING -

READABILITY SUMMARY _SCORE

LINKS_MAIN_LENGTH_INTERNAL_RATIO

NOUNS_SUM_OF_SCORES

0.3 0.4 0.5 0.6 0.7 ():S Hi!)
helpfulness

—
~
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CF-GNNEXxplainer: Counterfactual Explanations
for Graph Neural Networks

Lucic, A., ter Hoeve, M., Tolomei, G., de Rijke, M.,
& Silvestri, F. (2021). CF-GNNEXxplainer:
Counterfactual Explanations for Graph Neural
Networks. arXiv preprint arXiv:2102.03322.



Motivations: Graph Neural Networks

I ® A‘:I ................... <

INPUTGRAPH T e ‘

Curtesy of https://heartbeat.fritz.ai/introduction-to-graph-neural-networks-c5a9f4aa9e99
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Graph Neural Networks for Node Classification

Initial “layer 0” embeddings are previous layer

-/ equal to node features }nbedding ¥

T

kth layer

embedding non-linearity (e.g.,
of v ReLU or tanh)

average of neighbor’s
previous layer embeddings

Curtesy of http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf




CF-Example for Graph NNs

e A CF example x* for an instance x according to a trained classifier f is found
by perturbing the features of x such that f(x*) != f(x)

o An optimal CF example x° is one that minimizes the distance between the original instance
and the CF example, according to some distance function d, and the resulting optimal CF
explanation is Ax®°= x* = x

e For graph data, it may not be enough to simply perturb node features,
especially since they are not always available.
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Counterfactual Explanations for Node Prediction

e The goal is to find the smallest subgraph that if removed the model will predict
a different class for a node.

—>

Matrix
sparsification

e Cpred(va v | fv 9) T ,BACdist.('Uv f‘)
S T—

e 4 SAPIENZA
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Adjacency Matrix Perturbation

e Foranode v, we consider G =(A , X )

o A, is the restriction of A (the adjacency matrix) to the I-hop neighborhood of v (X ) is the
corresponding edge set.

o A*=POoA,
o P s a perturbation matrix
e To generate P we first generate an intermediate real-valued P* which we

threshold in order to get P*

SAPIENZA

UNIVERSITA DI ROMA




An example for GCN

e \We start from the traditional GCN formulation

f(A, X; W) = softmax [b‘l/zﬁb_l/zXW]

e We modify it to explicitly isolate A

f(A,, Xu; W) = softmax [(D,. +I)7Y2%(A, + I)(D, + 1)—1/2)(,_.;1«']

e \We define a new model g depending on P

9(A,, X, W; P) = softmax [ﬁv—l/ 2(P ©A,+1 )ﬁ,,—l/zX = W]
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CF-GNNEXxplainer

Algorithm 1 CF-GNNEXPLAINER: given a node v = (A,,z) where f(v) = y, generate the
minimal perturbation, © = (A,, z), such that f(v) # y.

Input: node v = (2, A, ), trained GNN model Function GET_CF_EXAMPLE()

f, CF model g, loss function £, learning rate P« threshold(g(ﬁ(k)))
«, trade-off parameter /3, number of iterations A, «POA,
A : O
K, distance function d. ""iazzd e (A 1)
f(v) =y # Get GNN prediction lff(:') 7 fsk)cand) then
P « ']n # Initialization l'( ) — Veand
if ‘Cdi.st(va U) < [:dist('uu l—'(k)) then
for k € range(K) do 7* « 0'%)  # Keep track of best CF
v(k) = GET_CF_EXAMPLE() end if
L+ Lw,?™) #Eql &Eq5 end if
P« Pk 4 aV gL # Update P return v
end for

SAPIENZA

UNIVERSITA DI ROMA




Experiments

e PBaselines:

o RANDOM
o 1-HOP

m All edges in the ego-graph
o RM-1HOP

m All edges *not* in the ego-graph
o (Modified) GNNExplainer

e Metrics
o Fidelity
o Explanation Size
o Sparsity
o Accuracy
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Datasets

e TREE-CYCLES
o binary tree (base graph), with cycle-shaped motifs
e TREE-GRIDS

o binary tree, with 3x3 grids as the motifs

e BA-SHAPES

o Barabasi-Albert (BA) with house-shaped motifs, where each motif consists of 5 nodes (one for
the top of the house, two in the middle, and two on the bottom).

e Task:
o Node classification. Classes: not-in-motif, in-motif: top, middle, bottom.
e Baseline Model (f) we want to explain:

o 3-layer GCN (hidden size = 20) for each task.
o  Our GCNs have at least 87% accuracy on the test set.
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Experiments: Results

TREE-CYCLES TREE-GRID BA-SHAPES
Metric Fid. Size Spars. Acc. Fid. Size Spars. Acc. Fid. Size Spars. Acc.
v v A A \{ \{ A A \{ v A A&
RANDOM 0.00 470 0.79 063 0.00 906 075 0.77 0.00 50331 0.58 0.17
lHOP 032 1564 0.13 045 032 2930 0.09 0.72 0.60 504.18 0.05 0.18
RM-1HoOP 046 211 089 — 061 227 092 — 021 1056 097 0.99
GNNExp 0.55 6.00 057 046 034 8.00 068 0.74 0.81 6.00 081 0.27
CEF-GNN 0.21 2.09 090 094 007 147 094 096 0.39 2.39 099 0.96
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Experiments: Explanation Size
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Figure 1: Histograms showing Explanation Size from RANDOM. Note the x-axis for BA-SHAPES
goes up to 1500. Left: TREE-CYCLES, Middle: TREE-GRID, Right: BA-SHAPES.
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Figure 2: Histograms showing Explanation Size from 1HOP. Note the x-axis for BA-SHAPES goes up
to 1500. Left: TREE-CYCLES, Middle: TREE-GRID, Right: BA-SHAPES.
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Figure 3: Histograms showing Explanation Size from RM-1HOP. Note the x-axis for BA-SHAPES
goes up to 70. Left: TREE-CYCLES, Middle: TREE-GRID, Right: BA-SHAPES.
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Experiments: Explanation Size
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Figure 4: Histograms showing Explanation Size from GNNEXPLAINER. Note that the y-axis goes
up to 1. Left: TREE-CYCLES, Middle: TREE-GRID, Right: BA-SHAPES.
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Figure 5: Histograms showing Explanation Size from CF-GNNEXPLAINER. Note the x-axis for
BA-SHAPES goes up to 70. Left: TREE-CYCLES, Middle: TREE-GRID, Right: BA-SHAPES.
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Conclusions and Future Directions

e Explaining the decisions of black-box models is of paramount importance.
o  Why didn’t you finance my mortgage?

e We presented two pioneering works in those directions:
o The first CF explanation model for an ensemble of trees
o The first CF explanation model for GNNs

e Future work: Can we design a generic model-agnostic mechanism to explain

a black box?
o We are working on a RL-based solution that is able to tweak features until the prediction

changes
o Using an anomaly-detection model to train a generative model to transform an input until the

label changes
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