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Introduction

• Noteworthy advances in data-driven AI
Voice recognition, image recognition, . . .

• Broad range of machine learning models
Interpretable models (eg. decision trees)
Non-interpretable models (eg. deep neural networks)
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Black-box Classifiers

Features: F = {f1, . . . , fn}

Domains: D1, . . . ,Dn

Literals: U is the set of all pairs (fi , v) where fi ∈ F , v ∈ Di

Features space: X is the set of n−tuples of literals of the form

{(f1, v1i), . . . , (fn, vnl)}

Classes: C = {c1, . . . , ck}, k ≥ 2

Classifier is a function f : X → C

Consistency A set H ⊆ U is consistent if @(f , v), (f ′, v ′) ∈ H s.t.
f = f ′ and v 6= v ′
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Example

Instances Vacation Concert Meeting Exhibition H iking
x1 0 0 1 0 0
x2 1 0 0 0 1
x3 0 0 1 1 0
x4 1 0 0 1 1
x5 0 1 1 0 0
x6 0 1 1 1 0
x7 1 1 0 1 1
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Explainability of Classifiers

Goal: to explain the classifier’s outcomes. Useful for
• giving feedback for users
• improving trust in decisions made by the model
• improving the model’s outcomes

Instances Vacation Concert Meeting Exhibition H iking
x1 0 0 1 0 0
x2 1 0 0 0 1
x3 0 0 1 1 0
x4 1 0 0 1 1
x5 0 1 1 0 0
x6 0 1 1 1 0
x7 1 1 0 1 1

Why does the model predict class 1 for instance x7?
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Approaches for Explaining Classifiers

• Trace-based approach retraces the internal decision-making process of
the model
X Real/Certain explanations
× Not easy to grasp for non experts
× Not feasible for non-interpretable models

• Input-Output approach looks for correlations between input data and
predictions
X Feasible for any model
× Plausible explanations
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Gloabal vs. Local Explanation Functions

Let f : X → C be a classifier

• Global explanations describe global behaviour of f (g : C → G)
Eg. f predicts hike whenever a person is on vacation

• Local explanations focus on individual instances (s : X → G′)
Eg. f predicts not hike for instance x1 because the person has a meeting
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Research Questions

• What are the properties of reasonable explanation functions?

• What are the types of explanations?

• How to define reasonable explanation functions that generate each type
of explanation?
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Properties

f : X → C s : C → G g : X → G′

Non-emptyness: Every instance should have an explanation (∀x ∈ X ,
g(x) 6= ∅)

Non-Triviality Explanations should be informative (∀x ∈ X , ∅ /∈ g(x))

Consistency: ∀x ∈ X , g(x) ⊆ s(f (x))

Soundness: An explanation should contain only information that is relevant to
a prediction.

Compleneness: Information that is not part of explanations is irrelevant to the
predicted class.

Representativity: there exists t : G′ → C such that for any x ∈ X ,
t(g(x)) = f(x)

Coherence: Compatible explanations should concern compatible predictions.
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Properties (cont.)

Y Vacation Concert Meeting Exhibition H iking
x1 0 0 1 0 0
x2 1 0 0 0 1
x3 0 0 1 1 0
x4 1 0 0 1 1
x5 0 1 1 0 0
x6 0 1 1 1 0
x7 1 1 0 1 1

• g(x1) = {U1} U1 = {(V ,0)}
• g(x2) = {U2} U2 = {(M,0)}

Incoherence
U1 ∪ U2 = {(V ,0), (M,0)} is consistent while f(x1) 6= f(x2)
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Types of Explanations: Global Explanations
Abductive explanations1 = Key factors that cause a given class

Class c is suggested because (fi , vi), . . . , (fk , vk )

Examples
• Not hike because there is a meeting
• Reject a loan because annual income is 30K

Argument Pro
An argument pro a class c ∈ C is a pair 〈H, c〉 s.t.
• H ⊆ U
• H is consistent
• ∀x ∈ X s.t. H ⊆ x, f(x) = c
• @H ′ ⊂ H such that H ′ satisfies the third condition.

Pros(c) denotes the set of all arguments pro c.
1Other terminology: Prime Implicants, Miminimal Sufficient Subsets, Pertinent Positives.
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Example

X f1 f2 f(.)
x1 0 0 c1
x2 0 1 c2
x3 1 0 c3
x4 1 1 c3

• Pros(c1) = {a1} a1 = 〈{(f1,0), (f2,0)}, c1〉
• Pros(c2) = {a2} a2 = 〈{(f1,0), (f2,1)}, c2〉
• Pros(c3) = {a3} a3 = 〈{(f1,1)}, c3〉
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Types of Explanations: Global Explanations (cont.)

Proposition
Let c ∈ C.
• (Pros(c) = ∅) ⇐⇒ (∀x ∈ X , f(x) 6= c).
• (Pros(c) = {〈∅, c〉}) ⇐⇒ (∀x ∈ X , f(x) = c)
• If ∃x ∈ X s.t. f(x) = c, then ∃〈H, c〉 ∈ Pros(c). Furthermore, H ⊆ x.
• If ∃〈H, c〉 ∈ Pros(c), then ∃x ∈ X s.t. f(x) = c.
• Let c, c′ ∈ C with c 6= c′. ∀〈H, c〉 ∈ Pros(c), ∀〈H ′, c′〉 ∈ Pros(c′),

H ∪ H ′ is inconsistent.

• The function Pros satisfies all the properties.
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Types of Explanations: Global Explanations (cont.)

Counterfactuals2 = Changes that result in another outcome
• If (fi , vi), . . . , (fk , vk ), the class would not have been c

Example
• If the annual income has been 45K , the loan would have been offered

Argument Con
Let c ∈ C. An argument con c is a pair 〈H, c〉 s.t.
• H ⊆ U
• H is consistent
• ∀x ∈ X s.t. H ⊆ x, f(x) 6= c
• @H ′ ⊂ H such that H ′ satisfies the third condition.

Cons(c) denotes the set of all arguments con c.

2Other terminology: Contrastive, Pertinent Negatives, Adversarial Examples.
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Example (cont.)

X f1 f2 f(.)
x1 0 0 c1
x2 0 1 c2
x3 1 0 c3
x4 1 1 c3

• Cons(c1) = {b1,b2} b1 = 〈{(f1,1)}, c1〉
b2 = 〈{(f2,1)}, c1〉

• Cons(c2) = {b3,b4} b3 = 〈{(f1,1)}, c2〉
b4 = 〈{(f2,0)}, c2〉

• Cons(c3) = {b5} b5 = 〈{(f1,0)}, c3〉
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Global Explanations: Arguments Con Classes (cont.

Proposition
Let c ∈ C.
• (Pros(c) = ∅) ⇐⇒ (Cons(c) = {〈∅, c〉})
• (Cons(c) = ∅) ⇐⇒ (Pros(c) = {〈∅, c〉})
• If C = {c, c′}, then

Pros(c) = {〈H, c〉 | 〈H, c′〉 ∈ Cons(c′)}
Cons(c) = {〈H, c〉 | 〈H, c′〉 ∈ Pros(c′)}

• For all 〈H, c〉 ∈ Pros(c), 〈H ′, c〉 ∈ Cons(c), the set H ∪H ′ is inconsistent.
• The function Cons satisfies all the properties.
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Duality of Pros and Cons

Supp

Let c ∈ C and Supp(c) = {H1, . . . ,Hk} s.t for every i = 1, . . . , k,
• Hi ⊆ U
• Hi is consistent
• ∀〈H, c〉 ∈ Cons(c), H ∪ Hi is inconsistent
• @H ′ ⊂ Hi s.t. H ′ satisfies the third condition.

Theorem
Let c ∈ C.

Pros(c) = {〈H, c〉 | H ∈ Supp(c)}
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Duality of Pros and Cons (cont.)

Att
Let c ∈ C and Att(c) = {H1, . . . ,Hk} s.t for every i = 1, . . . , k,
• Hi ⊆ U
• Hi is consistent
• ∀〈H, c〉 ∈ Pros(c), H ∪ Hi is inconsistent
• @H ′ ⊂ Hi s.t. H ′ satisfies the third condition.

Theorem
Let c ∈ C.

Cons(c) = {〈H, c〉 | H ∈ Att(c)}
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Local Explanations: Abductive Explanations

Why f(x) = c?

Abductive Explanation
Let x ∈ X . An abductive explanation of x is any member of the set:

AE(x) = {H ⊆ U | H ∈ Supp(f(x)) and H ⊆ x}.
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Example

X f1 f2 f(.)
x1 0 0 c1
x2 0 1 c2
x3 1 0 c3
x4 1 1 c3

• Pros(c1) = {a1} a1 = 〈{(f1,0), (f2,0)}, c1〉
• Pros(c2) = {a2} a2 = 〈{(f1,0), (f2,1)}, c2〉
• Pros(c3) = {a3} a3 = 〈{(f1,1)}, c3〉

• AE(x1) = {{(f1,0), (f2,0)}}
• AE(x2) = {{(f1,0), (f2,1)}}
• AE(x3) = {{(f1,1)}}
• AE(x4) = {{(f1,1)}}
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Local Explanations: Abductive Explanations (cont.)

Why f(x) = c?

Abductive Explanation
Let x ∈ X . An abductive explanation of x is any member of the set:

AE(x) = {H ⊆ U | H ∈ Supp(f(x)) and H ⊆ x}.

Proposition
• Let x ∈ X .

AE(x) 6= ∅
AE(x) = {∅} ⇐⇒ ∀y ∈ X , f(y) = f(x)
AE(x) ⊆ {H ⊆ U | 〈H,f(x)〉 ∈ Pros(f(x))}

• The function AE satisfies all the properties.
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Local Explanations: General Counterfactuals

Why x is not labelled with any other class than f(x)?

General Counterfactual
Let x ∈ X . A general counterfactual of x is any member of the set:

CF(x) = {H \ x | 〈H,f(x)〉 ∈ Cons(f(x))}.
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Example (cont.)

X f1 f2 f(.)
x1 0 0 c1
x2 0 1 c2
x3 1 0 c3
x4 1 1 c3

• Cons(c3) = {b5} b5 = 〈{(f1,0)}, c3〉

• CF(x4) = {{(f1,0)}}
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Local Explanations: General Counterfactuals (cont.)

Why x is not labelled by any other class than f(x)?

General Counterfactual
Let x ∈ X . A general counterfactual of x is any member of the set:

CF(x) = {H \ x | 〈H,f(x)〉 ∈ Cons(f(x))}.

Theorem
Let x ∈ X . H ∈ CF(x ,f(x)) ⇐⇒ H satisfies the conditions below:
• H ⊆ U
• H is consistent
• f(x↓H)a 6= f(x)
• @H ′ ⊂ H s.t. H ′ satisfies the above conditions.
af(x↓H) denotes the set of literals obtained by replacing the values of features in x

by those in h and keeping the remaining ones unchanged.
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Local Explanations: Specific Counterfactuals

Why x is not labelled with c′ instead of f(x)?
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Example (cont.)

Why x4 is not labelled with c1 instead of c3?

X f1 f2 f(.)
x1 0 0 c1
x2 0 1 c2
x3 1 0 c3
x4 1 1 c3

• CF(x4) = {H} H = {(f1,0)}
• But, x4↓H = x2 and f(x2) 6= c1
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Local Explanations: Specific Counterfactuals (cont.)

Why x is not labelled c′ instead of f(x)?

Specific Counterfactual
Let x ∈ X , c ∈ C s.t. f(x) 6= c. A specific counterfactual of (x , c) is a set
H ⊆ U s.t.
• ∃y ∈ X s.t. f(y) = c and y = x↓H
• @H ′ ⊂ H s.t. H ′ satisfies the above conditions.

X f1 f2 f(.)
x1 0 0 c1
x2 0 1 c2
x3 1 0 c3
x4 1 1 c3

The specific counterfactual of (x4, c1) is x1
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Limits

Arguments pro/con classes are built from the whole feature space X
X Correct explanations
× Not feasible in practice

Solution: To define the same type of explanations from Y ⊆ X
× Plausible explanations
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Plausible Abductive Explanations

Plausible Abductive Explanation
Let gp be an explanation function of a classification model f applied to theory
T = 〈F , D, C〉 s.t. for Y ⊆ X , x ∈ Y, H ⊆ U , H ∈ gYp (x) iff:
• H ⊆ x
• ∀y ∈ Y s.t. H ⊆ y, f(y) = f(x)
• @H ′ ⊂ H such that H ′ satisfies the above conditions.

H is called plausible abductive explanation of x.

Proposition
The function gp is incoherent and non-monotonic.
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Plausible Abductive Explanations

Y Vacation Concert Meeting Exhibition H iking
x1 0 0 1 0 0
x2 1 0 0 0 1
x3 0 0 1 1 0
x4 1 0 0 1 1
x5 0 1 1 0 0
x6 0 1 1 1 0
x7 1 1 0 1 1

• gp(x1) = {U1,U2} U1 = {(V ,0)}
• gp(x2) = {U4,U5} U2 = {(M,1)}
• gp(x5) = {U1,U2,U3} U3 = {(C,1), (E ,0)}

U4 = {(V ,1)}
U5 = {(M,0)}

Incoherence
U1 ∪ U5 = {(V ,0), (M,0)} is consistent while f(x1) 6= f(x2)
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Plausible Abductive Explanations

Y Vacation Concert Meeting Exhibition H iking
x1 0 0 1 0 0
x2 1 0 0 0 1
x3 0 0 1 1 0
x4 1 0 0 1 1
x5 0 1 1 0 0
x6 0 1 1 1 0
x7 1 1 0 1 1
x8 1 1 0 0 1

• gYp (x5) = {U1,U2,U3} U1 = {(V ,0)}
U2 = {(M,1)}

U3 = {(C,1), (E ,0)}

Non-monotonicity
U3 /∈ gZp (x5) where Z = Y ∪ {x8}
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Argument-based Explanation Functions

• An argument pro a class c ∈ C is a pair 〈H, c〉 s.t.
H ⊆ U (set of literals)
H is consistent
∀x ∈ Y s.t. H ⊆ x , f (x) = c
@H ′ ⊂ H such that H ′ satisfies the third condition.

arg(Y): the set of all arguments built from Y

• Example
a1 = 〈U1, 0〉 U1 = {(V , 0)}
a2 = 〈U2, 0〉 U2 = {(M, 1)}
a3 = 〈U3, 0〉 U3 = {(C, 1), (E , 0)}
a4 = 〈U4, 1〉 U4 = {(V , 1)}
a5 = 〈U5, 1〉 U5 = {(M, 0)}
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Attacks

• Let 〈H, c〉, 〈H ′, c′〉 be arguments. 〈H, c〉 attacks 〈H ′, c′〉 iff:
H ∪ H ′ is consistent, and
c 6= c′.

a2 a4 a3

a1 a5

• A set E of arguments is a naive extension iff:
@a, b ∈ E s.t. a attacks b, and
@E ′ ⊆ arg(Y) s.t. E ⊂ E ′ and E ′ satisfies the first condition.

• Example
E1 = {a1, a2, a3}
E2 = {a1, a4}
E3 = {a2, a5}
E4 = {a4, a5}
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Argument-based Explanation Functions

Definition
Let g∗ be an explanation function of a classification model f applied to theory
a T = 〈F , D, C〉 s.t. for Y ⊆ XT , for x ∈ Y,

gY∗ (x) = {H | ∃〈H,f(x)〉 ∈
⋂
Ei and H ⊆ x}

where E1, . . . , En are naive extensions.

Proposition
The function g∗ is coherent and non-monotonic.

Example
4⋂

i=1
Ei = ∅ ⇒ ∀x ∈ Y, g∗(x) = ∅
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Other Non-Monotonic Functions

Extensions Covered instances Covered classes
E1 = {a1,a2,a3} x1, x3, x5, x6 0
E2 = {a1,a4} x1, x2, x3, x4, x5, x6, x7, x8 0, 1
E3 = {a2,a5} x1, x2, x3, x4, x5, x6, x7, x8 0, 1
E4 = {a4,a5} x2, x4, x7, x8 1

• Select E2

{(V , 1)} is the reason for predicting the class 1
{(V , 0)} is the reason for predicting the class 0

• Select E3

{(M, 0)} is the reason for predicting the class 1
{(M, 1)} is the reason for predicting the class 0
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Summary

Conclusions
• Explanations of non-interpretable models are generated under

incomplete information
they are only plausible

• Trade-off to be found between properties

Challenges
• Novel non-monotonic explanation functions that:

guarantee existence of explanations
approximate ”real” explanations
satisfy desirable properties

• More properties of explanation functions
• Investigate suitability of non-monotonic functions for explaining

interpretable models
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