

Explaining Black-Box Classifiers: Properties and Functions

Leila Amgoud

CNRS – IRIT
Toulouse – France

November 24, 2021

Introduction

- Noteworthy advances in data-driven AI
 - Voice recognition, image recognition, ...
- Broad range of machine learning models
 - **Interpretable** models (eg. decision trees)
 - **Non-interpretable** models (eg. deep neural networks)

Black-box Classifiers

Features: $\mathcal{F} = \{f_1, \dots, f_n\}$

Domains: $\mathcal{D}_1, \dots, \mathcal{D}_n$

Literals: \mathcal{U} is the set of all pairs (f_i, v) where $f_i \in \mathcal{F}$, $v \in \mathcal{D}_i$

Features space: \mathcal{X} is the set of n -tuples of literals of the form

$$\{(f_1, v_{1i}), \dots, (f_n, v_{nl})\}$$

Classes: $\mathcal{C} = \{c_1, \dots, c_k\}$, $k \geq 2$

Classifier is a function $f : \mathcal{X} \rightarrow \mathcal{C}$

Consistency A set $H \subseteq \mathcal{U}$ is consistent if $\nexists (f, v), (f', v') \in H$ s.t.
 $f = f'$ and $v \neq v'$

Example

Instances	Vacation	Concert	Meeting	Exhibition	Hiking
x_1	0	0	1	0	0
x_2	1	0	0	0	1
x_3	0	0	1	1	0
x_4	1	0	0	1	1
x_5	0	1	1	0	0
x_6	0	1	1	1	0
x_7	1	1	0	1	1

Explainability of Classifiers

Goal: to explain the classifier's outcomes. Useful for

- giving feedback for users
- improving trust in decisions made by the model
- improving the model's outcomes

Instances	Vacation	Concert	Meeting	Exhibition	Hiking
x_1	0	0	1	0	0
x_2	1	0	0	0	1
x_3	0	0	1	1	0
x_4	1	0	0	1	1
x_5	0	1	1	0	0
x_6	0	1	1	1	0
x_7	1	1	0	1	1

Why does the model predict class 1 for instance x_7 ?

Approaches for Explaining Classifiers

- **Trace-based** approach retraces the *internal decision-making process* of the model
 - ✓ **Real/Certain** explanations
 - ✗ Not easy to grasp for non experts
 - ✗ Not feasible for **non-interpretable** models
- **Input-Output** approach looks for correlations between input data and predictions
 - ✓ Feasible for any model
 - ✗ **Plausible** explanations

Global vs. Local Explanation Functions

Let $f : \mathcal{X} \rightarrow \mathcal{C}$ be a classifier

- **Global** explanations describe global behaviour of f $(g : \mathcal{C} \rightarrow \mathcal{G})$
Eg. f predicts hike whenever a person is on vacation
- **Local** explanations focus on individual instances $(s : \mathcal{X} \rightarrow \mathcal{G}')$
Eg. f predicts not hike for instance x_1 because the person has a meeting

Research Questions

- What are the properties of reasonable explanation functions?
- What are the types of explanations?
- How to define reasonable explanation functions that generate each type of explanation?

Properties

$$f : \mathcal{X} \rightarrow \mathcal{C}$$

$$s : \mathcal{C} \rightarrow \mathcal{G}$$

$$g : \mathcal{X} \rightarrow \mathcal{G}'$$

Non-emptiness: Every instance should have an explanation ($\forall x \in \mathcal{X}, g(x) \neq \emptyset$)

Non-Triviality Explanations should be informative ($\forall x \in \mathcal{X}, \emptyset \notin g(x)$)

Consistency: $\forall x \in \mathcal{X}, g(x) \subseteq s(f(x))$

Soundness: An explanation should contain only information that is **relevant** to a prediction.

Completeness: Information that is not part of explanations is **irrelevant** to the predicted class.

Representativity: there exists $t : \mathcal{G}' \rightarrow \mathcal{C}$ such that for any $x \in \mathcal{X}$, $t(g(x)) = f(x)$

Coherence: Compatible explanations should concern compatible predictions.

Properties (cont.)

y	Vacation	Concert	Meeting	Exhibition	Hiking
x_1	0	0	1	0	0
x_2	1	0	0	0	1
x_3	0	0	1	1	0
x_4	1	0	0	1	1
x_5	0	1	1	0	0
x_6	0	1	1	1	0
x_7	1	1	0	1	1

- $g(x_1) = \{U_1\}$ $U_1 = \{(V, 0)\}$
- $g(x_2) = \{U_2\}$ $U_2 = \{(M, 0)\}$

Incoherence

$U_1 \cup U_2 = \{(V, 0), (M, 0)\}$ is consistent while $f(x_1) \neq f(x_2)$

Types of Explanations: Global Explanations

Abductive explanations¹ = Key factors that cause a given class

Class c is suggested because $(f_i, v_i), \dots, (f_k, v_k)$

Examples

- Not hike because there is a meeting
- Reject a loan because annual income is 30K

Argument Pro

An argument pro a class $c \in \mathcal{C}$ is a pair $\langle H, c \rangle$ s.t.

- $H \subseteq \mathcal{U}$
- H is consistent
- $\forall x \in \mathcal{X}$ s.t. $H \subseteq x, f(x) = c$
- $\nexists H' \subset H$ such that H' satisfies the third condition.

$\text{Pros}(c)$ denotes the set of all arguments pro c .

¹Other terminology: Prime Implicants, Miminimal Sufficient Subsets, Pertinent Positives.

Example

\mathcal{X}	f_1	f_2	$f(\cdot)$
x_1	0	0	c_1
x_2	0	1	c_2
x_3	1	0	c_3
x_4	1	1	c_3

- $\text{Pros}(c_1) = \{a_1\}$
- $\text{Pros}(c_2) = \{a_2\}$
- $\text{Pros}(c_3) = \{a_3\}$

$$a_1 = \langle \{(f_1, 0), (f_2, 0)\}, c_1 \rangle$$
$$a_2 = \langle \{(f_1, 0), (f_2, 1)\}, c_2 \rangle$$
$$a_3 = \langle \{(f_1, 1)\}, c_3 \rangle$$

Types of Explanations: Global Explanations (cont.)

Proposition

Let $c \in \mathcal{C}$.

- $(\text{Pros}(c) = \emptyset) \iff (\forall x \in \mathcal{X}, f(x) \neq c)$.
- $(\text{Pros}(c) = \{\langle \emptyset, c \rangle\}) \iff (\forall x \in \mathcal{X}, f(x) = c)$
- If $\exists x \in \mathcal{X}$ s.t. $f(x) = c$, then $\exists \langle H, c \rangle \in \text{Pros}(c)$. Furthermore, $H \subseteq x$.
- If $\exists \langle H, c \rangle \in \text{Pros}(c)$, then $\exists x \in \mathcal{X}$ s.t. $f(x) = c$.
- Let $c, c' \in \mathcal{C}$ with $c \neq c'$. $\forall \langle H, c \rangle \in \text{Pros}(c), \forall \langle H', c' \rangle \in \text{Pros}(c')$,

$H \cup H'$ is inconsistent.

- The function Pros satisfies all the properties.

Types of Explanations: Global Explanations (cont.)

Counterfactuals² = Changes that result in *another* outcome

- If $(f_i, v_i), \dots, (f_k, v_k)$, the class would not have been c

Example

- If the annual income has been 45K, the loan would have been offered

Argument Con

Let $c \in \mathcal{C}$. An *argument con* c is a pair $\langle H, \bar{c} \rangle$ s.t.

- $H \subseteq \mathcal{U}$
- H is consistent
- $\forall x \in \mathcal{X}$ s.t. $H \subseteq x$, $f(x) \neq c$
- $\nexists H' \subset H$ such that H' satisfies the third condition.

$\text{Cons}(c)$ denotes the set of all arguments con c .

²Other terminology: Contrastive, Pertinent Negatives, Adversarial Examples.

Example (cont.)

\mathcal{X}	f_1	f_2	$f(.)$
x_1	0	0	c_1
x_2	0	1	c_2
x_3	1	0	c_3
x_4	1	1	c_3

- $\text{Cons}(c_1) = \{b_1, b_2\}$

$$b_1 = \langle \{(f_1, 1)\}, \overline{c_1} \rangle$$

$$b_2 = \langle \{(f_2, 1)\}, \overline{c_1} \rangle$$

- $\text{Cons}(c_2) = \{b_3, b_4\}$

$$b_3 = \langle \{(f_1, 1)\}, \overline{c_2} \rangle$$

$$b_4 = \langle \{(f_2, 0)\}, \overline{c_2} \rangle$$

- $\text{Cons}(c_3) = \{b_5\}$

$$b_5 = \langle \{(f_1, 0)\}, \overline{c_3} \rangle$$

Proposition

Let $c \in \mathcal{C}$.

- $(\text{Pros}(c) = \emptyset) \iff (\text{Cons}(c) = \{\langle \emptyset, \bar{c} \rangle\})$
- $(\text{Cons}(c) = \emptyset) \iff (\text{Pros}(c) = \{\langle \emptyset, c \rangle\})$
- *If $\mathcal{C} = \{c, c'\}$, then*
 - $\text{Pros}(c) = \{\langle H, c \rangle \mid \langle H, \bar{c} \rangle \in \text{Cons}(c')\}$
 - $\text{Cons}(c) = \{\langle H, \bar{c} \rangle \mid \langle H, c' \rangle \in \text{Pros}(c')\}$
- *For all $\langle H, c \rangle \in \text{Pros}(c)$, $\langle H', \bar{c} \rangle \in \text{Cons}(c)$, the set $H \cup H'$ is inconsistent.*
- *The function Cons satisfies all the properties.*

Duality of Pros and Cons

Supp

Let $c \in \mathcal{C}$ and $\text{Supp}(c) = \{H_1, \dots, H_k\}$ s.t for every $i = 1, \dots, k$,

- $H_i \subseteq \mathcal{U}$
- H_i is consistent
- $\forall \langle H, \bar{c} \rangle \in \text{Cons}(c), H \cup H_i$ is inconsistent
- $\nexists H' \subset H_i$ s.t. H' satisfies the third condition.

Theorem

Let $c \in \mathcal{C}$.

$$\text{Pros}(c) = \{\langle H, c \rangle \mid H \in \text{Supp}(c)\}$$

Duality of Pros and Cons (cont.)

Att

Let $c \in \mathcal{C}$ and $\text{Att}(c) = \{H_1, \dots, H_k\}$ s.t for every $i = 1, \dots, k$,

- $H_i \subseteq \mathcal{U}$
- H_i is consistent
- $\forall \langle H, \bar{c} \rangle \in \text{Pros}(c)$, $H \cup H_i$ is inconsistent
- $\nexists H' \subset H_i$ s.t. H' satisfies the third condition.

Theorem

Let $c \in \mathcal{C}$.

$$\text{Cons}(c) = \{\langle H, c \rangle \mid H \in \text{Att}(c)\}$$

Local Explanations: Abductive Explanations

Why $f(x) = c$?

Abductive Explanation

Let $x \in \mathcal{X}$. An *abductive explanation* of x is any member of the set:

$$\text{AE}(x) = \{H \subseteq \mathcal{U} \mid H \in \text{Supp}(f(x)) \text{ and } H \subseteq x\}.$$

Example

\mathcal{X}	f_1	f_2	$f(.)$
x_1	0	0	c_1
x_2	0	1	c_2
x_3	1	0	c_3
x_4	1	1	c_3

- $\text{Pros}(c_1) = \{a_1\}$
- $\text{Pros}(c_2) = \{a_2\}$
- $\text{Pros}(c_3) = \{a_3\}$

- $\text{AE}(x_1) = \{\{(f_1, 0), (f_2, 0)\}\}$
- $\text{AE}(x_2) = \{\{(f_1, 0), (f_2, 1)\}\}$
- $\text{AE}(x_3) = \{\{(f_1, 1)\}\}$
- $\text{AE}(x_4) = \{\{(f_1, 1)\}\}$

$$a_1 = \langle \{(f_1, 0), (f_2, 0)\}, c_1 \rangle$$
$$a_2 = \langle \{(f_1, 0), (f_2, 1)\}, c_2 \rangle$$
$$a_3 = \langle \{(f_1, 1)\}, c_3 \rangle$$

Local Explanations: Abductive Explanations (cont.)

Why $f(x) = c$?

Abductive Explanation

Let $x \in \mathcal{X}$. An *abductive explanation* of x is any member of the set:

$$\text{AE}(x) = \{H \subseteq \mathcal{U} \mid H \in \text{Supp}(f(x)) \text{ and } H \subseteq x\}.$$

Proposition

- Let $x \in \mathcal{X}$.
 - $\text{AE}(x) \neq \emptyset$
 - $\text{AE}(x) = \{\emptyset\} \iff \forall y \in \mathcal{X}, f(y) = f(x)$
 - $\text{AE}(x) \subseteq \{H \subseteq \mathcal{U} \mid \langle H, f(x) \rangle \in \text{Pros}(f(x))\}$
- The function AE satisfies all the properties.

Local Explanations: General Counterfactuals

Why x is not labelled with any other class than $f(x)$?

General Counterfactual

Let $x \in \mathcal{X}$. A *general counterfactual* of x is any member of the set:

$$CF(x) = \{H \setminus x \mid \langle H, \overline{f(x)} \rangle \in \text{Cons}(f(x))\}.$$

Example (cont.)

\mathcal{X}	f_1	f_2	$f(.)$
x_1	0	0	c_1
x_2	0	1	c_2
x_3	1	0	c_3
x_4	1	1	c_3

- $\text{Cons}(c_3) = \{b_5\}$ $b_5 = \langle \{(f_1, 0)\}, \overline{c_3} \rangle$
- $\text{CF}(x_4) = \{\{(f_1, 0)\}\}$

Local Explanations: General Counterfactuals (cont.)

Why x is not labelled by any other class than $f(x)$?

General Counterfactual

Let $x \in \mathcal{X}$. A *general counterfactual* of x is any member of the set:

$$\text{CF}(x) = \{H \setminus x \mid \langle H, \overline{f(x)} \rangle \in \text{Cons}(f(x))\}.$$

Theorem

Let $x \in \mathcal{X}$. $H \in \text{CF}(x, f(x)) \iff H$ satisfies the conditions below:

- $H \subseteq \mathcal{U}$
- H is consistent
- $f(x_{\downarrow H})^a \neq f(x)$
- $\nexists H' \subset H$ s.t. H' satisfies the above conditions.

^a $f(x_{\downarrow H})$ denotes the set of literals obtained by replacing the values of features in x by those in h and keeping the remaining ones unchanged.

Local Explanations: Specific Counterfactuals

Why x is not labelled with c' instead of $f(x)$?

Example (cont.)

Why x_4 is not labelled with c_1 instead of c_3 ?

\mathcal{X}	f_1	f_2	$f(.)$
x_1	0	0	c_1
x_2	0	1	c_2
x_3	1	0	c_3
x_4	1	1	c_3

- $\text{CF}(x_4) = \{H\}$ $H = \{(f_1, 0)\}$
- But, $x_{4 \downarrow H} = x_2$ and $f(x_2) \neq c_1$

Local Explanations: Specific Counterfactuals (cont.)

Why x is not labelled c' instead of $f(x)$?

Specific Counterfactual

Let $x \in \mathcal{X}$, $c \in \mathcal{C}$ s.t. $f(x) \neq c$. A *specific counterfactual* of (x, c) is a set $H \subseteq \mathcal{U}$ s.t.

- $\exists y \in \mathcal{X}$ s.t. $f(y) = c$ and $y = x_{\downarrow H}$
- $\nexists H' \subset H$ s.t. H' satisfies the above conditions.

\mathcal{X}	f_1	f_2	$f(.)$
x_1	0	0	c_1
x_2	0	1	c_2
x_3	1	0	c_3
x_4	1	1	c_3

The specific counterfactual of (x_4, c_1) is x_1

Limits

Arguments pro/con classes are built from the **whole feature space** \mathcal{X}

- ✓ **Correct** explanations
- ✗ **Not feasible** in practice

Solution: To define the same type of explanations from $\mathcal{Y} \subseteq \mathcal{X}$

- ✗ **Plausible** explanations

Plausible Abductive Explanations

Plausible Abductive Explanation

Let g_p be an explanation function of a classification model f applied to theory $\mathcal{T} = \langle \mathcal{F}, \mathcal{D}, \mathcal{C} \rangle$ s.t. for $\mathcal{Y} \subseteq \mathcal{X}$, $x \in \mathcal{Y}$, $H \subseteq \mathcal{U}$, $H \in g_p^{\mathcal{Y}}(x)$ iff:

- $H \subseteq x$
- $\forall y \in \mathcal{Y}$ s.t. $H \subseteq y$, $f(y) = f(x)$
- $\nexists H' \subset H$ such that H' satisfies the above conditions.

H is called *plausible abductive explanation* of x .

Proposition

The function g_p is incoherent and non-monotonic.

Plausible Abductive Explanations

\mathcal{Y}	Vacation	Concert	Meeting	Exhibition	Hiking
x_1	0	0	1	0	0
x_2	1	0	0	0	1
x_3	0	0	1	1	0
x_4	1	0	0	1	1
x_5	0	1	1	0	0
x_6	0	1	1	1	0
x_7	1	1	0	1	1

- $g_P(x_1) = \{U_1, U_2\}$ $U_1 = \{(V, 0)\}$
- $g_P(x_2) = \{U_4, U_5\}$ $U_2 = \{(M, 1)\}$
- $g_P(x_5) = \{U_1, U_2, U_3\}$ $U_3 = \{(C, 1), (E, 0)\}$
- $U_4 = \{(V, 1)\}$
- $U_5 = \{(M, 0)\}$

Incoherence

$U_1 \cup U_5 = \{(V, 0), (M, 0)\}$ is consistent while $f(x_1) \neq f(x_2)$

Plausible Abductive Explanations

\mathcal{Y}	Vacation	Concert	Meeting	Exhibition	Hiking
x_1	0	0	1	0	0
x_2	1	0	0	0	1
x_3	0	0	1	1	0
x_4	1	0	0	1	1
x_5	0	1	1	0	0
x_6	0	1	1	1	0
x_7	1	1	0	1	1
x_8	1	1	0	0	1

- $g_p^{\mathcal{Y}}(x_5) = \{U_1, U_2, U_3\}$

$$U_1 = \{(V, 0)\}$$

$$U_2 = \{(M, 1)\}$$

$$U_3 = \{(C, 1), (E, 0)\}$$

Non-monotonicity

$U_3 \notin g_p^{\mathcal{Z}}(x_5)$ where $\mathcal{Z} = \mathcal{Y} \cup \{x_8\}$

Argument-based Explanation Functions

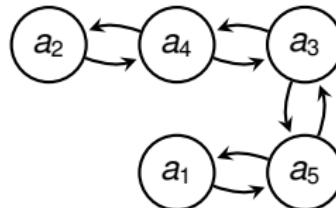
- An argument pro a class $c \in \mathcal{C}$ is a pair $\langle H, c \rangle$ s.t.
 - $H \subseteq \mathcal{U}$ (set of literals)
 - H is consistent
 - $\forall x \in \mathcal{Y}$ s.t. $H \subseteq x$, $f(x) = c$
 - $\nexists H' \subset H$ such that H' satisfies the third condition.

$\text{arg}(\mathcal{Y})$: the set of all arguments built from \mathcal{Y}

- Example
 - $a_1 = \langle U_1, 0 \rangle \quad U_1 = \{(V, 0)\}$
 - $a_2 = \langle U_2, 0 \rangle \quad U_2 = \{(M, 1)\}$
 - $a_3 = \langle U_3, 0 \rangle \quad U_3 = \{(C, 1), (E, 0)\}$
 - $a_4 = \langle U_4, 1 \rangle \quad U_4 = \{(V, 1)\}$
 - $a_5 = \langle U_5, 1 \rangle \quad U_5 = \{(M, 0)\}$

Attacks

- Let $\langle H, c \rangle, \langle H', c' \rangle$ be arguments. $\langle H, c \rangle$ **attacks** $\langle H', c' \rangle$ iff:
 - $H \cup H'$ is consistent, and
 - $c \neq c'$.



- A set \mathcal{E} of arguments is a **naive extension** iff:
 - $\nexists a, b \in \mathcal{E}$ s.t. a attacks b , and
 - $\nexists \mathcal{E}' \subseteq \text{arg}(\mathcal{V})$ s.t. $\mathcal{E} \subset \mathcal{E}'$ and \mathcal{E}' satisfies the first condition.

• Example

- $\mathcal{E}_1 = \{a_1, a_2, a_3\}$
- $\mathcal{E}_2 = \{a_1, a_4\}$
- $\mathcal{E}_3 = \{a_2, a_5\}$
- $\mathcal{E}_4 = \{a_4, a_5\}$

Argument-based Explanation Functions

Definition

Let g_* be an explanation function of a classification model \mathfrak{f} applied to theory a $\mathcal{T} = \langle \mathcal{F}, \mathcal{D}, \mathcal{C} \rangle$ s.t. for $\mathcal{Y} \subseteq \mathcal{X}_{\mathcal{T}}$, for $x \in \mathcal{Y}$,

$$g_*^{\mathcal{Y}}(x) = \{H \mid \exists \langle H, \mathfrak{f}(x) \rangle \in \bigcap_{i=1}^4 \mathcal{E}_i \text{ and } H \subseteq x\}$$

where $\mathcal{E}_1, \dots, \mathcal{E}_n$ are naive extensions.

Proposition

The function g_ is coherent and non-monotonic.*

Example

$$\bigcap_{i=1}^4 \mathcal{E}_i = \emptyset \Rightarrow \forall x \in \mathcal{Y}, g_*(x) = \emptyset$$

Other Non-Monotonic Functions

Extensions	Covered instances	Covered classes
$\mathcal{E}_1 = \{a_1, a_2, a_3\}$	x_1, x_3, x_5, x_6	0
$\mathcal{E}_2 = \{a_1, a_4\}$	$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8$	0, 1
$\mathcal{E}_3 = \{a_2, a_5\}$	$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8$	0, 1
$\mathcal{E}_4 = \{a_4, a_5\}$	x_2, x_4, x_7, x_8	1

- Select \mathcal{E}_2
 - $\{(V, 1)\}$ is the reason for predicting the class 1
 - $\{(V, 0)\}$ is the reason for predicting the class 0
- Select \mathcal{E}_3
 - $\{(M, 0)\}$ is the reason for predicting the class 1
 - $\{(M, 1)\}$ is the reason for predicting the class 0

Summary

Conclusions

- Explanations of non-interpretable models are generated under incomplete information
 - they are only **plausible**
- Trade-off to be found between properties

Challenges

- Novel non-monotonic explanation functions that:
 - guarantee existence of explanations
 - approximate "real" explanations
 - satisfy desirable properties
- More properties of explanation functions
- Investigate suitability of non-monotonic functions for explaining interpretable models