
GLocalX and the Local to Global
explanation paradigm
Mattia Setzu
mattia.setzu@phd.unipi.it

Global explanations
● explain all predictions on all

records
● globally approximate the

decision boundary

E.g. CART4, CPAR5, SBRL6, etc.

Local explanations
● explain one prediction on one

record
● locally approximate the decision

boundary

E.g. LIME1, LORE2, SHAP3, etc.

Local and Global explanations

[1] "Why Should I Trust You?": Explaining the Predictions of Any Classifier, Ribeiro et al.
[2] Factual and Counterfactual Explanations for Black Box Decision Making, Guidotti et al.
[3] A Unified Approach to Interpreting Model Predictions, Lundberg & Lee

[4] Classification and Regression Trees, Breiman et al.
[5] CPAR: Classification based on Predictive Association Rules, Yin et al.
[6] Scalable Bayesian Rule Lists, Yang et al.

VerifyActDebug

Who are our users?

ML developer End user Auditor

● Has none (or local) access
● Desires global

understanding

● Has none (or local) access
● Desiders local

understanding

● Has global access
● Desires local and global

understanding

Who are our users?

ML developer End user Auditor

Global explanations
● require data
● more cumbersome to acquire
● loose but potentially simple

E.g. DT, CART, CPAR, SBRL, etc.

Local explanations
● require only a fraction of the data
● more easily acquired
● precise but potentially complex
● possibly diverse7,8

E.g. LIME, LORE, SHAP, etc.

Local and Global explanations

[7] Ensembles of locally independent prediction models, Ross et al.
[8] Learning qualitatively diverse and interpretable rules for classification, Ross et al.

Global explanations
● require data
● more cumbersome to acquire
● loose but potentially simple

E.g. DT, CART, CPAR, SBRL, etc.

Local explanations
● require only a fraction of the data
● more easily acquired
● precise but potentially complex
● possibly diverse1,2

E.g. LIME, LORE, SHAP, etc.

A third way: Local to Global9

[7] Ensembles of locally independent prediction models, Ross et al.
[8] Learning qualitatively diverse and interpretable rules for classification, Ross et al.
[9] Meaningful explanations of black box ai decision systems, Pedreschi et al.

Explain globally by explaining locally!

● explanation-driven (decision rules)
● inferring instead of learning
● model-agnostic

GLocalX10: iterative and hierarchical
inference axis-parallel decision rules as
explanations

The Local to Global setting in GLocalX

[10] GLocalX - From Local to Global Explanations of Black Box AI Models, Setzu et al.

Explain globally by explaining locally!

GLocalX10:
● input: local decision rules
● output: global decision rules
● inferring instead of learning
● model-agnostic

The Local to Global setting in GLocalX

[10] GLocalX - From Local to Global Explanations of Black Box AI Models, Setzu et al.

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

GLocalX: a test run

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, X)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

GLocalX: a test run

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(q) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, batch(X), f)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, X)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

GLocalX: a test run

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(boundary) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, X, f)
 if fitness(e1, e2, M, f, X):
 replace(boundary,
 (e1, e2), M)

 q = sort(boundary, X)
 break

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(q) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, batch(X), f)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, X)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

GLocalX: a test run

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(boundary) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, X, f)
 if fitness(e1, e2, M, f, X):
 replace(boundary,
 (e1, e2), M)

 q = sort(boundary, X)
 break

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(q) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, batch(X), f)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, X)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

GLocalX: a test run

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(boundary) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, X, f)
 if fitness(e1, e2, M, f, X):
 replace(boundary,
 (e1, e2), M)

 q = sort(boundary, X)
 break

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(q) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, batch(X), f)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, X)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

GLocalX: a test run

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(boundary) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, X, f)
 if fitness(e1, e2, M, f, X):
 replace(boundary,
 (e1, e2), M)

 q = sort(boundary, X)
 break

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(q) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, batch(X), f)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, X)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

GLocalX: a test run

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(boundary) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, X, f)
 if fitness(e1, e2, M, f, X):
 replace(boundary,
 (e1, e2), M)

 q = sort(boundary, batch(X))
 break
 return filter(boundary, a)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(q) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, X, f)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

GLocalX: a test run

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(boundary) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, X, f)
 if fitness(e1, e2, M, f, X):
 replace(boundary,
 (e1, e2), M)

 q = sort(boundary, X)
 break

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))
 while len(q) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, batch(X), f)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, X)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

GLocalX: a test run

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, batch(X))

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, X)

while len(q) > 1:
 e1, e2 = pop(q)
 M = merge(e1, e2, batch(X), f)

 if fitness(e1, e2, M, f, X):
 replace(boundary,
 (e1, e2), M)

 q = sort(boundary, X)
 break

return filter(boundary, a)

● Distance between explanations

● Linkage for sets of explanations
○ min
○ max
○ full

What to merge?
sort merge fitness

Twofold merge operator
○ approximate union (⊕) for concordance, approximate difference

(⊖) for discordance
○ each premise is an axis-parallel polyhedron, e.g.

premise age > 20 is polyhedron Page: [20, +∞)

⊕ ⊖

join cut

How to merge?
sort merge fitness

[non-empty] P
i
, Q

i
 ≠ ∅

[empty]
P
i
 = ∅ XOR

Q
i
 = ∅

From local to global via premise relaxation.

P
i
: [a

P
, b

p
] + Q

i
: [a

Q
, b

Q
]

15 20 25 40

⊕age ∈ [15, 20)

15 40

age ∈ [25, 40)⊕ =

age ∈ [15, 40)

Join
sort merge fitness

[left] [a
P
, a

Q
]

[right] [b
P
, b

Q
]

[in-between] [a
Q
, a

P
], [b

P
, b

Q
]

[everything] [a
<
, a

P
], [b

P
, b

>
]

From global to local via premise specification.

P
i
: [a

P
, b

p
] - Q

i
: [a

Q
, b

Q
]

 cutting cut overlap

Cut
sort merge fitness

From global to local via premise specification.

20 30 35 40

age ∈ [30, 40) age ∈ [20, 35)⊖ = ⊖

20 30 35 40

age ∈ [30, 40), age ∈ [20, 30)

 cutting cut overlap

Cut
sort merge fitness

Not all merges are created equal!
● some are more global and less

accurate
● some are less global and more

accurate

BIC(E)
● model likelihood as explanation

fidelity
● complexity as avg. #rules and

avg. length

Should we merge?
sort merge fitness

Data may be scarce for auditors
and users
● density estimation of

training data
● run GLocalX as is

404: data not found!

● 3 UCI datasets (~1k to ~50k records) , 8 black boxes (DNN, RF, SVM)
● 1 real-world fraud detection dataset (from the Italian Ministry of

Economics)
● Natively global models:
○ rule-based models (CPAR)
○ decision tree (pruned/not pruned)

black box DVL set GLocalX DVL TS

reserved to the black box reserved to GLocalX blind

Validation setting

Acquiring local explanation can be costly, can we get away with
using fewer local explanations?

Input size: how many rules do we need?

The higher the filter, the less rules we output.

α-percentile Fidelity Size Length

75 83.0 ± 3.6 31.0 ± 19.4 5.36 ± 2.41

90 84.7 ± 5.14 11.5 ± 6.4 5.43 ± 2.46

95 84.5 ± 5.48 6.625 ± 2.9 5.17 ± 2.59

99 84.0 ± 5.0 3.625 ± 2.6 5.97 ± 3.04

How simple can we make our explanations?

Fidelity Size Length

GLocalX 85.1 8.5 4.28 ± 1.42

GLocalX* 83.5 9.5 4.79 ± 1.67

CPAR 86.6 91.6 3.06 ± 1.66

Decision Tree 87.5 1036.5 6.60 ± 1.86

Pruned Decision Tree 85.5 29.1 2.64 ± 0.73

Union 76.8 2660.2 4.14 ± 1.63

GLocalX vs Natively global models

github.com/msetzu/glocalx

GLocalX

● Local to Global explanation paradigm
● Explaining globally by explaining locally
● Explanation cost: how many

explanations do we really need?

mattia.setzu@phd.unipi.it

github.com/msetzu/glocalx

GLocalX: future works (?)

● Logical inference
● Knowledge integration
● Local to (sub-)Global
● Local to Global in other domains

mattia.setzu@phd.unipi.it

Twofold merge operator
○ approximate union (⊕) for concordance, approximate difference

(⊖) for discordance
○ each premise is an axis-parallel polyhedron, e.g.

premise age > 20 is polyhedron Page: [20, +∞)

⊕ ⊖

join cut

How to merge?
sort merge fitness

May remind you of θ-subsumption in ILP5. In a LFE setting:

● [join] generalization as entailment (local entails global)
● [cut] specialization as inverse entailment (global entails local)

Why not apply classic LFE learning?

● lack of variables (what to substitute?);
● lattice already implicit in the polyhedral interpretation;
● practically: very few merges, less accurate models;

Inference (or subsumption?)

[5] Automatic Methods of Inductive Inference, Plotkin

Piggybacking again on ILP: background knowledge injection and
predicate invention

● can generalize premises to domain-specific concepts
● can use more principled similarity measures
● invent symbols for common clauses (premises)

Generalization: Join

[5] Automatic Methods of Inductive Inference, Plotkin

Locality (globality) is a continuum!

Explain different (possibly related) groups/clusters, e.g.
○ medical AI on white/black or young/old patients7

○ AI judge on white/black defendants8

Local to (sub-)global

[6] Interpretable Decision Sets: A Joint Framework for Description and Prediction, Lakkaraju et al.
[7] FairLens: Auditing black-box clinical decision support systems, Panigutti et al.
[8] https://github.com/propublica/compas-analysis

A plethora of challenges:

● [text] sparsity, merging tokens/text, few (if any) global families;
● [images] highly complex and entangled latent space.

Local to Global in other domains

github.com/msetzu/glocalx

Backup slides

●

mattia.setzu@phd.unipi.it

