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Problem Statement

« 3D object category recognition
» Classifyinga 3D object to a specific category of objects

« Explain the reasons for classification of each 3D object to a specific category of
objects using the information about the 3D object parts.

 Explainability with Argumentation-Based Learning (ABL)
« 3D Object Parts Segmentation with Local Hierarchical Dirichlet Process (Local-HDP)
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Online Incremental Learning

A sequence of data enters the model

The model has to adapt incrementally i.e.
M; . is constructed based on M; without a
complete retraining.

The model should preserve the acquired
knowledge

Online learning means that you learn as the
data comes in. Offline means that you have a
static dataset.

Another wrinkle that can affect online
learning is that your concepts might change
through time.

*  Concept-Shift
* (Catastrophic Forgetting ->1n NNs

%
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Online Incremental Learning
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Lifelong (Open-Ended / Class-
Incremental) Learning

Supervised Learning
* The number of class labels are not fixed.
* It can grow over time.

* The model should be able to handle learn
new classes without a need for complete
retraining.

* Problemin mostdeep neural networks

* Alsoin other methods like probabilistic
models

university of faculty of science bernoulli institute
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Class 1-N; Class N4—Nj5

Base w
Data

Base model Class incremental learning

Class No—Nj Class Ng—N~
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3D Object Category Recognition

* Point Clouds and R D m];_a
. InputR e Olﬁt 0 %D objects
epth: (1, g, V%Y, 2

* Outpub @itegory label of the 3D

Ob bciigect is a 3D camera!
* Along with the RGB

values of every pixel, it
also gives you the

associated with every ﬁ

depth values
pixel.

* It uses structured
infrared light to
determine depth
values.

Introduction 6
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Real-Time Robotic Applications:

First Robotic Demonstration: Second Robotic Demonstration:

* Goal: * Goal:
* Learn Unforeseen Object Categories * Learn Unforeseen Object Categories
* Manipulate the recognized objects (Clean Table) * Recognize Unforeseen Objects

* Human-Robot Interaction: * Category Specific Task (Cleaning all the cans)
e User Interface  Human-Robot Interaction:

Voice Command

Local-HDP 7
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Clutter and Occlusion

* Clutter: a collection of things lying aboutin an untidy state.

* Occlusion: two or more objects cover parts of other objects.

Category

view frustum

Handle — Mug]
{ Explanation )

Segmented

| .

. P)
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. . M roof
3D Object Parts Segmentation B hood
M frame
B wheel
* Input: The point cloud of 3D objects M tail
M engine
. . ; M fuselage
Output: Object Parts Segments. B wing
M fin
*I frame
M nose
M handle
M frame
M seat
M wheel

Introduction 9
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Argumentation
Based Learning

Argumentation-Based Learning (ABL) 10
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The architecture of Argumentation-
based Learning (ABL)

- BAF Unit (Left): Weighed Bipolar
Argumentation Framework (BAF) for
Hypotheses Generation

- AF Unit (Right): Abstract Argumentation
Framework (AF/AA) for Hypotheses
Argumentation

BAF for
Hypotheses
Generation

|

s

Second Guess

Hypotheses

_/ Data Instance \_

Argumentation-Based Learning (ABL)
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Data Instance

|

AF for
Hypotheses
Argumentation

|

First Guess

11



Imperial College
London

Example

Colors (Red, Green, Blue, Yellow)
Concept (Ball, Box, Person)

Recovery Behaviors (Push, Ask, Continue,
Alternative Route)

The updating procedure for each unit

Ei? e o / bt / S

Time | Color | Concept Best Recovery
step Behavior

1 Red Ball Push

2 Red Box Alternativeroute

3 Red Person Ask

4 | Green Ball Push

5 Green Box Alternative route

6 Green | Person Ask

7 Blue Ball Push

8 Blue Box Alternativeroute

9 Blue | Person Alternative route

10 | Yellow Ball Push

11 | Yellow Box Alternativeroute

12 | Yellow| Person Ask

13 None None Continue

Argumentation-Based Learning (ABL) 12
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BAF for
hypotheses
generation

Update BAF with
I new data instance

Hypotheses

Data Instance

[
!

/

-l
-

1: R-Ba

Second Recovery
w Behavior

o

\

AF for hypotheses
Argumentation

| %

l Recovery Behavior

Data Instance
1: R-Ba
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Time | Color | Concept Best Recovery
step Behavior
1 Red Ball Push
2 Red Box Alternativeroute
3 Red Person Ask
4 | Green Ball Push
5 Green Box Alternative route
6 Green | Person Ask
7 Blue Ball Push
8 Blue Box Alternativeroute
9 Blue | Person Alternative route
10 | Yellow Ball Push
11 | Yellow Box Alternativeroute
12 | Yellow| Person Ask
13 None None Continue

Argumentation-Based Learning (ABL) 13
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O R —» Push

Ba — Push

2: R-Bo

Nothing

R —p Push

Ba —» Push

Push: Wrong

2: R-Bo
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Time | Color | Concept Best Recovery
step Behavior
1 Red Ball Push
2 Red Box Alternative route
3 Red Person Ask
4 | Green Ball Push
5 Green Box Alternative route
6 Green | Person Ask
7 Blue Ball Push
8 Blue Box Alternative route
9 Blue | Person Alternative route
10 | Yellow Ball Push
11 | Yellow Box Alternative route
12 | Yellow| Person Ask
13 None None Continue

Argumentation-Based Learning (ABL) 14
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R _pAlt  Bo—p Alt
R—p Alt '
Bo —» Alt
@
2
a( )= ~
a5 h : R- Ba —p Push
nc E 3:R-P \R_.,Push l—b
l Nothing Nothing

3:R-P
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Time | Color | Concept Best Recovery
step Behavior
1 Red Ball Push
2 Red Box Alternativeroute
3 Red Person Ask
4 | Green Ball Push
5 Green Box Alternative route
6 Green | Person Ask
7 Blue Ball Push
8 Blue Box Alternativeroute
9 Blue | Person Alternative route
10 | Yellow Ball Push
11 | Yellow Box Alternativeroute
12 | Yellow| Person Ask
13 None None Continue

Argumentation-Based Learning (ABL) 15
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R _p Alt Bo —p Alt
R —p Ask P —pAsk
P —p Ask 4
. R —pAsk
4: G-Ba R push |
\ —» | Ba —p Push /

Push: Correct

4: G-Ba
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Time | Color | Concept Best Recovery
step Behavior
1 Red Ball Push
2 Red Box Alternativeroute
3 Red Person Ask
4 | Green Ball Push
5 Green Box Alternative route
6 Green | Person Ask
7 Blue Ball Push
8 Blue Box Alternativeroute
9 Blue | Person Alternative route
10 | Yellow Ball Push
11 | Yellow Box Alternativeroute
12 | Yellow| Person Ask
13 None None Continue

Argumentation-Based Learning (ABL) 16
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5:G-Bo

5:G-Bo

5:G-Bo

R _pAlt
P —pAsk
<
R—pAsk
\R —p Push | Ba —p Push /
Alt: Correct
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Time | Color | Concept Best Recovery
step Behavior
1 Red Ball Push
2 Red Box Alternativeroute
3 Red Person Ask
4 | Green Ball Push
5 Green Box Alternative route
6 Green | Person Ask
7 Blue Ball Push
8 Blue Box Alternativeroute
9 Blue | Person Alternative route
10 | Yellow Ball Push
11 | Yellow Box Alternativeroute
12 | Yellow| Person Ask
13 None None Continue

Argumentation-Based Learning (ABL) 1/

stitute



Imperial College

London

9:B-P "

-

R _p Alt

9:B-P

R —p Push

.

Bo —p Alt \

R —p Ask

P —pAsk

<

Ba —» Push

/

lAsk: Wrong

9: B-P
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Time | Color | Concept Best Recovery
step Behavior
1 Red Ball Push
2 Red Box Alternativeroute
3 Red Person Ask
4 | Green Ball Push
5 Green Box Alternative route
6 Green | Person Ask
7 Blue Ball Push
8 Blue Box Alternativeroute
9 Blue | Person Alternativeroute
10 | Yellow Ball Push
11 | Yellow Box Alternativeroute
12 | Yellow| Person Ask
13 None None Continue

Argumentation-Based Learning (ABL) 18
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Time | Color | Concept Best Recovery
step Behavior
1 Red Ball Push
2 Red Box Alternative route
11: Y80 | - 3 Red Person Ask
QQOQOOOOO0 g pop Ata O\ 4 | Green| Ball Push
‘% > .”‘ : ' R Al | b A1/ 5 Green Box Alternative route
30 e— PG&O 6 | Green | Person Ask
.. * 2O | 7 | Blue Ball Push
O : > 30N Rere S| v 8 | Blue Box Alternative route
7 ) o R e push 9 Blue | Person | Alternativeroute
e Og ) A % 10 |Yellow| Ball Push
L 12vp lehing 11 |Yellow| Box Alternative route
12:Y | lAskorAIt 12 | Yellow| Person Ask
13 None None Continue

Argumentation-Based Learning (ABL) 19
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R —» Alt

R —pPush

Bo—p Alt:3/4 \

P —» Alt:1/4
sk ()

R —»Ask

No—p Cont

Nc—p Cont
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Ba—» Push B —p Alt:2/4

Time | Color | Concept Best Recovery
step Behavior
1 Red Ball Push
2 Red Box Alternativeroute
3 Red Person Ask
4 | Green Ball Push
5 Green Box Alternative route
6 Green | Person Ask
7 Blue Ball Push
8 Blue Box Alternativeroute
9 Blue | Person Alternative route
10 | Yellow Ball Push
11 | Yellow Box Alternativeroute
12 | Yellow| Person Ask
13 None None Continue

ABL

20
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Time | Color | Concept Best Recovery
step Behavior
1 Red Ball Push
2 Red Box Alternative route
Summary: 3 Red | Person Ask
4 | Green Ball Push
e At each pointin the learning phase 5 Green Box Alternative route
the most importantset of 6 | Green | Person Ask
hypotheses can be find in the 7 Blue Ball Push
grounded extension of the AF unit. 8 Blue Box Alternative route
* Forthiscase: 7 outof 13 was 9 Blue | Person | Alternativeroute
successfully classified. 10 | vellow Ball Push
11 | Yellow Box Alternative route
12 | Yellow | Person Ask
13 None None Continue

Argumentation-Based Learning (ABL) 21
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Comparisons

1. Online Incremental Learning:
* Incremental Support Vector Machines (ISVM)
* Online Random Forest (ORF)
* Online Naive Bayes
* Neural Networks, Multi Layer Perceptron (MLP)

* Decision Tree Based Methods
* 1ID3
* J48isBasedon C4.5
* PARTis Based on C4.5
* PRISM

2. (Deep) Reinforcement Learning (RL)

3. Contextual Bandits (Associative Reinforcement Learning)

7 university of faculty of science bernoulli institute
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List of Publications:

1. H.Ayoobi, M. Cao, R. Verbrugge, and B. Verheij. Handling unforeseen
failures using argumentation-based learning.In 2019 IEEE 15th
International Conference on Automation Science and Engineering
(CASE), pages1699-1704, Aug 2019

2. H.Ayoobi, M. Cao, R. Verbrugge, and B. Verheij. Argumentation-based
online incremental learning. IEEE Transactions on Automation Science
and Engineering (TASE), 2021

3. H.Ayoobi, M. Cao, R. Verbrugge, and B. Verheij. Argue to learn:
Accelerated argumentation-based learning. In 20th IEEE International
Conference on Machine Learning and Applications (ICMLA)

Argumentation-Based Learning (ABL) 22
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The limitation of ABL

7 university of faculty of science bernoulli institute
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* ABL is designed to handle discrete feature spaces. Therefore, It cannot handle continuous features.

* The computational complexity is high. We have addressed this issue in our latest research by proposing Accelerated
Argumentation-Based Learning (AABL)

Limitations of ABL 23
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Accelerated ABL

Architecture: Only Bipolar Argumentation Framework

BAF

-

l

Prediction

:

wa 7/ university of faculty of science bernoulli institute
, “ roningen and engineering
e g g

Data Instance

Accelerated Argumentation-Based Learning (AABL) 24



3

Imperial College

Accelerated ABL

Acceleration Strategies:

1) Feature-value subsets:
« Starting from subsets with length L=1 and increment the subset size if needed.
« Lisincremented under certain condition which occurs because of the pruning step.
2) Pruning the unnecessary supporting nodes from BAF:
* Including only unigue supporting nodes.

« A supporting node is considered unique if it only support one class label (recovery behavior).

Accelerated Argumentation-Based Learning (AABL) 25
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Accelerated ABL

Trained Accelerated ABL vs ABL model for a small example.

[
g Ba i
: Bo —» Alt:3/4 '
R-P R AR P D AI1/4)
P —p Ask
Push O(ZO
p B-P ¥
R~ Ask
éo_:'Qii. /\ No-—» Cont Nc —p Cont
- p R —p Push
a = n
i <
oo Cont X - Ba —» Push B —p Alt:2/4
No
" Nc _f
a) Our Approach b) Original ABL approach [1], [2]
* 4 times lower nodes and relations.

Accelerated Argumentation-Based Learning (AABL) 26
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Computational and Space Complexity

* Subset of length one vs all the power set:
« Accelerated ABL: (Polynomial)
e Scenario 1: O(n)
« Scenario 2-3: O(n?)
« ABL: (Exponential)

* Scenario 1-3: O(2™)

Accelerated Argumentation-Based Learning (AABL) 27
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Applications of ABL:

* ABL is an machine learning algorithm which can autonomously extract a set of hypotheses to explain the reasoning process.
e ABL can be used in open-ended learning and offline supervised learning as well as the reinforcement learning scenarios.
 The model can be updated incrementally.

* Argumentation is used for modeling the defeasibility relation in the knowledge base of the agent.

* ABL takes the features dependencies into account.

* Learning faster than other common techniques for online incremental supervised learning with a smaller number of learning
instances.

Therefore, it can be used in:
 All offline supervised learning problems.

» Lifelong (open-ended / class-incremental learning)

Accelerated Argumentation-Based Learning (AABL) 30
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Local Hierarchical Dirichlet Process (Local-HDP)

Interactive Open-Ended 3D Object
Categorization in Real-Time Robotic
Scenarios
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Topics

gene 0.04
dna 0.02
genetic 0.01

s

Topic proportions and

Documents :
assignments

Seeking Life’s Bare (Genetic) Necessities
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N\ R
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in asimple parasite and esty- -/ A\ for Biotechnology Information TR
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\:m NEEY
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- Assume each document defines a

distribution over (hidden) topics.

- Assume each topic defines a distribution
over words
The posterior probability of these latent
variables given a document collection
determines a hidden decomposition of the

collection into topics.

So we have:
Words
Topics
Documents
Corpus

Local-HDP 32
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3D Object Category Recognition
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Categories Layer

* Visual Words: Local-Shape Descriptor. (Spin-Images)

* Documents: Bag of Words layer

e Topics: Inferred latent variables showing the distribution

) : Topics Layer
of each document over visual words. L SR WL ik |

Topic 2

e Object Views: Point Cloud of Objects from different

perspectives.

» Categories: Each Category contain different objects and ) i e
each object has several object views. " a e
() Intra-Category Variation (a) a coffee mug (b) voxelizing the coffee mug
® 9

) o © [

P, % _@ 00:0

. .' . g #1113111

L 342435354 | -
{b} Dnifferent ':]:h..lm Views (c) extracting local-features (d) BoW representation

Local-HDP 33



S pi n I m ages a S a Spin-Images are constructed by:

- Computing the surface normal for each point. (Oriented Point)

LO Ca I O bj ec:t - Project the points to the tangent plane and find (a, B)
- Spread the location of the point in the 2-D array

Descriptor e
I(ij+1)+=(1-a)b —&7

1G,j)+=(1-a)(1-b) T
£ a
X
An V
B B <——b——>@

Solx)|= (o,
G S8 Oﬂl
I(i+1,j+1) +=ab
o ~
. 1 I(i+1,j)+=a(1-b)

Local-HDP



Generative Model:

A\

e \We have the bag-of-words assumption (Order of the words are not important)
* |n probability, we call it exchangeability assumption

P(Wi,ees W) = PWe(1)) s P(Woy) (0 permutation)

Per-word

Proportions . .
topic assignment

parameter
Per-document Observed i Topic
topic proportions word Topics  parameter

ol |
OO OO

o O Zdn Wian N B U,
D K

p(ﬁ:g:Z:Wmﬂ?) —
K D N
i 9 9 WA
gp(ﬁ |T))ED( ala) (HP(Zd,nl a2 )P(Wan | B1:k Zd,n)) Local-HDP 35
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Experiments

Exp#

#QCI

#LC
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GCA (%)
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(a) Summary of experiments for Local-LDA sing collapsed Gibbs sampling
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(d) Summary of experiments for Local-HDP approach (our approach)

university of
groningen

faculty of science bernoulli institute
/ and engineering /

List of Publications:

Hamed Ayoobi, H Kasaei, Ming Cao,
Rineke Verbrugge, and Bart Verheij.
Local-HDP: Interactive open-ended 3D
object category recognition in real-time
robotic scenarios. Robotics and
Autonomous Systems (RAS), 147:103911,
2022

Local-HDP 36
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Airplane (4) Bag (2) Cap (2) Car (4

Local Hierarchical Dirichlet Process (Local-HDP)

Chair (4) Earphone (2) Guitar (3) Khnife (2)

3D Object Parts Segmentation

Pistol (3 Rocket (3) Skateboard (3 Table (2)
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3D Object Parts Segmentation

l"'-‘l-l,.:"-.:':i-.-.: :._"..-.':'-.. .'-"'.':\l‘ . ... o
* Visual Words: R . “T— I'
Y'._. E-.';'-- o T ¥ & N
* Local-to-Global Descriptor. (Spin-Images) Y i«.,
o, A
. f‘::.& .
* Global-to-Local Descriptor.(GOOD) < I. a
:a-‘-_-..&-
 Documents: Bag of Words layer - _
(a) A Keypoint's Normal (b) Local-to-Global Spin-image (c) 2D Bins
» Topics: Inferred latent variables showing the
distribution of each document over visual words.
. . . . . Keypoint
* Object Views: Point Cloud of Objects from different
perspectives. |
* Object Parts: Segmenting a 3D object to a set of
semantic parts.
(a) Global Projections (b) Keypoint on the Projection (c) 2D Bins

Local-HDP for Segmentation 38
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Segmentation Results:

Local-HDP for Segmentation 39
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Explain What You See

3D Object Recognition using ABL and Local-HDP

Researchers: Hamed Ayoobi
Hamidreza Kasaei
Ming Cao
Rineke Verbrugge
Bart Verheij

) ()

| Category )

4 B
Handle — Mug

Segmented

\ ABL )

| Explanation |
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« Integrating Argumentation Based Learning (ABL) with Local Hierarchical Dirichlet Process (Local-HDP) for 3D object

parts Segmentation

Part 1

Point Cloud

i

Part 2

Local-HDP

|

Part 1

Part 2

fle

Part 4

l\Lo-::e:l-HI::rP/

Part 3 ™

Segmented
Body Handle

sooy KUY

Category

’ 4[ Explanation

-

\ Segmented

Explain What You See
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Occlusion:

* Most of DNNs in the literature does not work well with high degree of occlusion.

» Constructing a dataset for occlusion based on ShapeNet core dataset.

(c) Random Cuts
(Simulated Occlusions)

(a) Mug (b) Random Rotations

Explain What You See

42
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Explainability:

* |n this research, the power of argumentative explanations improved the model to classify
occluded object.

* The learning accuracies shows that explainability made the model more robust to missing data

» Explainability for zero-shot learning:

* Imagine that the model is trained with Cup that has no handles, and with teapots and pitchers that have handles.
* What happens if we show an unforeseen Mug with a handle to the model?
* Probably misclassification: since it has a handle, it is more probably to be classified as a teapot or pitcher.

» Using argumentation-Based Learning, we can teach the model with a rule like the following one and the model
can detect the new type of mugs afterwards without previously seeing them (zero-shot learning).

« The ABL model should previously learned Cup’s Body = Cup

« User injectsthisrule: Cup’s Body and a Handle & Mug and the model learns to classify unforeseen category of mugs.

Explain What You See 43
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CONCLUSION

* Argumentation online Incremental Learning (ABL)
* Learning with smaller number of learning
instances
* Higher final learning accuracy
* Local Hierarchical Dirichlet Process (Local-HDP)
» (Category recognition for 3D Objects
* 3D Object Parts Segmentation
* Both have a higher learning precision
* Both are applicable in open-ended
scenarios
* Both work for real-time robotic
applications.
* Integrating ABL and Local-HDP
* Handle High degree of occlusion
* Provide explanations for the reasoning
process

Future works:
Human in the loop, debugging the model with user
interactions.




