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• Existing neural network-based systems 
proved to be:

• Capable of analyzing and classifying text, image, 
video and speech;

• Able to act autonomously, making decisions 
previously made by humans.

The need for humans to understand their 
reasoning becomes evident
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Justifications or Explanations

• Allow users to build trust in a model and its results;

• Increase the chances of users acting based on models’ 
outputs;

• Lead to better assessment of when a system is right or 
wrong.

Ideally, neural networks would have the ability 
to explain or justify their results
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However…

• Neural networks use representations based on high-
dimensional data.

• Do not provide human interpretable indications of why a 
specific output was produced

We need a human-understandable language
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Ontology / Background Theory

• Provides a conceptualization of a domain, describing 
how concepts are related with each other

• Usually specified using a logic-based language with a 
precise semantics

• E.g. ASP or DL

Train ⌘ 9has.(Wagon t Locomotive)
WarTrain w 9has.ReinforcedCar u 9has.PassengerCar

EmptyTrain ⌘ 8has.(EmptyWagon t Locomotive) u 9has.EmptyWagon
PassengerTrain w 9has.(PassengerCar u LongWagon) t (� 2 has.PassengerCar)

LongFreightTrain ⌘ LongTrain u FreightTrain
LongTrain w (� 2 has.LongWagon) t (� 3 has.Wagon)

FreightTrain w (� 2 has.FreightWagon)
RuralTrain w 9has.EmptyWagon u 9has.(PassengerCar t FreightWagon)

u ¬9has.LongWagon
MixedTrain w 9has.FreightWagon u 9has.PassengerCar u 9has.EmptyWagon

TypeA ⌘ WarTrain t EmptyTrain
TypeB ⌘ PassengerTrain t LongFreightTrain
TypeC ⌘ RuralTrain tMixedTrain
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de Sousa Ribeiro & L, Aligning Artificial Neural 
Networks and Ontologies towards Explainable AI, 
In AAAI’21
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• Do different languages lead to different justifications?

• Based on the cartesian coordinate system.
• Based on the spherical coordinate system.
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• If a concept is relevant, will we be able to extract it?

Relevant and Non-Relevant Concepts

• Is there a benefit to using the activations of the main 
network?

Cost of the Mappings

• Do the extracted concepts correspond to our 
understanding?

Meaning of the Extracted Concepts

• Is it possible to pinpoint the neurons necessary to extract a 
given concept?

Origin of the Extracted Concepts

• How good are the justifications obtained?

Justifications

de Sousa Ribeiro & L, Aligning Artificial Neural 
Networks and Ontologies towards Explainable AI, 
In AAAI’21
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XTRAINS Dataset
bitbucket.org/xtrains/dataset
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• trains having either a wagon with at least a circle inside 
and a wagon with two walls in each side, or no wagons 
with geometric figures inside them.

Type A

• trains having a long wagon or two wagons with at least a 
circle inside, or trains having at least two long wagons, or 
three wagons, with at least two of which with a geometric 
figure inside.

Type B

• trains having a wagon with no geometric figure inside, and 
either a wagon with a circle inside and a wagon with a 
geometric figure inside that is not a circle, or no long 
wagons and a wagon with a figure inside.

Type C

XTRAINS Dataset
bitbucket.org/xtrains/dataset
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XTRAINS Dataset
bitbucket.org/xtrains/dataset

XTRAINS Ontology (partial)

Train ⌘ 9has.(Wagon t Locomotive)
WarTrain w 9has.ReinforcedCar u 9has.PassengerCar

EmptyTrain ⌘ 8has.(EmptyWagon t Locomotive) u 9has.EmptyWagon
PassengerTrain w 9has.(PassengerCar u LongWagon) t (� 2 has.PassengerCar)

LongFreightTrain ⌘ LongTrain u FreightTrain
LongTrain w (� 2 has.LongWagon) t (� 3 has.Wagon)

FreightTrain w (� 2 has.FreightWagon)
RuralTrain w 9has.EmptyWagon u 9has.(PassengerCar t FreightWagon)

u ¬9has.LongWagon
MixedTrain w 9has.FreightWagon u 9has.PassengerCar u 9has.EmptyWagon

TypeA ⌘ WarTrain t EmptyTrain
TypeB ⌘ PassengerTrain t LongFreightTrain
TypeC ⌘ RuralTrain tMixedTrain
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Relevant and Non-Relevant
Concepts

• If a concept is relevant, will we be able to extract it?

Relevant and Non-Relevant Concepts

Relevant concepts are extracted with the 
highest accuracy values
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• Is there a benefit to using the activations of the main 
network?

Cost of the Mappings
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Cost of the Mappings

Mapping networks require few labeled training 
data
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• Do the extracted concepts correspond to our 
understanding?

Meaning of the Extracted Concepts

Meaning of the Extracted
Concepts

Mapping networks properly identify the visual 
features embodying each concept
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• Is it possible to pinpoint the neurons necessary to 
extract a given concept?

Origin of the Extracted Concepts

Origin of the Extracted
Concepts

Input Reduce procedure

• Searches for the smallest set of inputs achieving 
the highest accuracy to extract a given concept;

• On average, decreased the mapping networks’ 
input by 95%;

• Resulting mapping networks achieved similar 
accuracies to those trained using all neurons 
from the dense layers of the main network.
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• Is it possible to pinpoint the neurons necessary to 
extract a given concept?

Origin of the Extracted Concepts

Output Concept
Dense Layers Input Reduce

Accuracy Features Accuracy Features

N
N

A

9has.FreightWagon 0.9367 10480 0.9263 453

WarTrain 0.9719 10480 0.9930 4

EmptyTrain 0.9937 10480 0.9942 2

9has.ReinforcedCar 0.9950 10480 0.9928 4

N
N

B

9has.FreightWagon 0.9676 10464 0.9629 2374

PassengerTrain 0.9485 10464 0.9433 1107

LongTrain 0.9670 10464 0.9701 534

FreightTrain 0.9523 10464 0.9493 1247

N
N

C

9has.FreightWagon 0.9459 10608 0.9500 519

RuralTrain 0.9820 10608 0.9916 7

MixedTrain 0.9484 10608 0.9750 14

9has.LongWagon 0.9813 10608 0.9814 12

Origin of the Extracted
Concepts

It is possible to pinpoint the neurons necessary 
to extract a given concept
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• How good are the justifications obtained?

Justifications

LongTrain(i1)

FreightTrain(i1)

LongFreightTrain ⌘ LongTrain u FreightTrain

TypeB ⌘ PassengerTrain t LongFreightTrain

All Correct Some Correct None Correct No Justifications
NNA 85.5% 14.3% 0.2% 0.0%
NNB 94.2% 2.1% 0.7% 3.0%
NNC 90.6% 8.9% 0.1% 0.4%

Justifications

The resulting justifications were correct in most 
cases
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• Relevant concepts are extracted with the highest accuracy 
values

Relevant and Non-Relevant Concepts

• Mapping networks require few labeled training data

Cost of the Mappings

• Mapping networks properly identify the visual features 
embodying each concept

Meaning of the Extracted Concepts

• It is possible to pinpoint the neurons necessary to extract a 
given concept

Origin of the Extracted Concepts

• The resulting justifications were correct in 90% of the cases

Justifications
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What if we do not have the ontology?
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Ferreira, de Sousa Ribeiro, Gonçalves and L, 
Looking Inside the Black-Box: Logic-based 
Explanations for Neural Networks, In KR’22
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TypeA ⌘ WarTrain t EmptyTrain

TypeB ⌘ (FreightTrain u LongTrain)
t (PassengerTrain u ¬EmptyTrain)

TypeC ⌘ MixedTrain t RuralTrain

<latexit sha1_base64="sxEIO+E+qYa/kZ6BtiKgF0P/hS4="></latexit>

TypeA ⌘ WarTrain t EmptyTrain

TypeB ⌘ PassengerTrain t LongFreightTrain

TypeC ⌘ MixedTrain t RuralTrain

<latexit sha1_base64="6FsWQddr/YNVC4D6ZKx3yrIq9zs="></latexit>

FMain FXTrains

MA 99.72± 0.18% 99.92± 0.35%
MB 98.71± 0.31% 99.83± 0.76%
MC 99.33± 0.32% 99.52± 1.52%

<latexit sha1_base64="08jDEErt+garNnt5KATad8UdMqI="></latexit>

EmptyTrain,FreightTrain, LongTrain

MixedTrain,PassengerTrain,RuralTrain

WarTrain, 9has.FreightWagon, 9has.LongWagon

9has.OpenRoof, 9has.ReinforcedCar
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Ferreira, de Sousa Ribeiro, Gonçalves and L, 
Looking Inside the Black-Box: Logic-based 
Explanations for Neural Networks, In KR’22

Dataset’s Ontology Learned Ontology

Mapped Concepts Fidelity Scores

Logic Based 
Explanations for 
Neural Networks

Learning the Ontology
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Train-Level Concepts

Learned ontologies

Mapped Concepts

Fidelity Scores
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<latexit sha1_base64="kJQuhBpPQiNx+29D/nHh5WWNwx4="></latexit>

EmptyTrain, LongFreightTrain,MixedTrain,

PassengerTrain,RuralTrain,WarTrain

<latexit sha1_base64="DoowyrUsxKgUuLMKuoWDmhdn0RU="></latexit>

9has.EmptyWagon, 9has.FreightWagon,

9has.LongWagon,

9has.(LongWagon u PassengerCar),

9has.PassengerCar, 9has.ReinforcedCar,
� 2has.FreightWagon,� 2has.LongWagon,

� 2has.PassengerCar,� 3has.Wagon

<latexit sha1_base64="w9BU4OBrK+fjkaW7i3Qrai1m1lA="></latexit>

TypeA ⌘ EmptyTrain tWarTrain

TypeB ⌘ LongFreightTrain t PassengerTrain

TypeC ⌘ MixedTrain t RuralTrain

<latexit sha1_base64="iiApHwCN/Dnjx/VPNzQsrJPC0eM="></latexit>

TypeA ⌘ (9has.PassengerCar t ¬9has.FreightWagon)
u (9has.ReinforcedCar t ¬9has.PassengerCar)

TypeB ⌘ 9has.(LongWagon u PassengerCar)
t (� 3has.Wagon u � 2has.FreightWagon)

TypeC ⌘ 9has.EmptyWagon u (¬9has.LongWagon
t (� 3has.Wagon u 9has.PassengerCar))

Wagon-Level Concepts

Mapped Concepts

Fidelity Scores
<latexit sha1_base64="Z1iNyrDw8sW01pJ4sHENMUCvW9s="></latexit>

FMain FXTrains

MA 99.76± 0.19% 100.00± 0.0%
MA 98.82± 0.39% 100.00± 0.0%
MA 99.46± 0.20% 100.00± 0.0%

<latexit sha1_base64="A5L2N30OvLkD/JZ2iY5B7n4wnDI="></latexit>

FMain FXTrains

MA 94.55± 10.14% 94.44± 11.12%
MA 97.50± 0.52% 96.73± 1.18%
MA 98.16± 0.36% 99.02± 0.56%

Levels of Abstraction



<latexit sha1_base64="sxEIO+E+qYa/kZ6BtiKgF0P/hS4="></latexit>

TypeA ⌘ WarTrain t EmptyTrain
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TypeC ⌘ MixedTrain t RuralTrain
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<latexit sha1_base64="1VTgek/O4dQ5qDzDk/HJy5h14jo="></latexit>

LongFreightTrain, 9has.LongWagon,

9has.PassengerCar,� 3has.Wagon,

� 2has.PassengerCar

<latexit sha1_base64="yzz+TWK6IWUZ8+z3dv1TsdPd3Vk="></latexit>

FMain FXTrains

MA 50.16± 0.26% 50.00± 0.00%
MB 92.53± 2.75% 92.70± 1.43%
MC 76.78± 1.99% 76.99± 0.94%

<latexit sha1_base64="lx7MIVr23raNsF355MRseVYQIek="></latexit>

TypeA ⌘ >
TypeB ⌘ � 3has.Wagon t LongFreightTrain

TypeC ⌘ (� 3has.Wagon u 9has.PassengerCar)t
t (¬(� 2has.PassengerCar)u

u ¬9has.LongWagon)

• Sampled 20 random sets of 5 
concepts

• Trained mapping networks for 
each main network

• Learned Theories
• Average Fidelity scores

• 72.6% (FMain)
• 71.9% (FXTrains)

Insufficient Concepts
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Modified Dataset Modified Dataset’s Ontology

Using Mapping Networks
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• Trained 50 main networks
• Learned Theories using dataset 

labels
• Always obtained*

<latexit sha1_base64="bEHNS77EpAPc0ph0xMyZyKjtZcY=">AAACGXicbZBNSwMxEIazftb6VfXoJVgET2VXRD2KXjwIfmBtoVtKNp1tg9lkTWaFUvo3vPhXvHhQxKOe/Dem7R60+kLg5ZkZJvNGqRQWff/Lm5qemZ2bLywUF5eWV1ZLa+s3VmeGQ5VrqU09YhakUFBFgRLqqQGWRBJq0e3JsF67B2OFVtfYS6GZsI4SseAMHWqV/NDG9FzREO4ycR/SY42okzOIcQjtHc/SnF2JTtfBVqnsV/yR6F8T5KZMcl20Sh9hW/MsAYVcMmsbgZ9is88MCi5hUAwzCynjt6wDDWcVS8A2+6PLBnTbkTaNtXFPIR3RnxN9lljbSyLXmTDs2snaEP5Xa2QYHzb7QqUZguLjRXEmKWo6jIm2hQGOsucM40a4v1LeZYZxdGEWXQjB5Ml/zc1uJdiv7F3ulY+O8zgKZJNskR0SkANyRE7JBakSTh7IE3khr96j9+y9ee/j1ikvn9kgv+R9fgM+vaB9</latexit>

On ⌘ BottomLeftOn t BottomRightOn
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On ⌘ TopLeftOn t TopRightOn

Baseline

<latexit sha1_base64="bEHNS77EpAPc0ph0xMyZyKjtZcY=">AAACGXicbZBNSwMxEIazftb6VfXoJVgET2VXRD2KXjwIfmBtoVtKNp1tg9lkTWaFUvo3vPhXvHhQxKOe/Dem7R60+kLg5ZkZJvNGqRQWff/Lm5qemZ2bLywUF5eWV1ZLa+s3VmeGQ5VrqU09YhakUFBFgRLqqQGWRBJq0e3JsF67B2OFVtfYS6GZsI4SseAMHWqV/NDG9FzREO4ycR/SY42okzOIcQjtHc/SnF2JTtfBVqnsV/yR6F8T5KZMcl20Sh9hW/MsAYVcMmsbgZ9is88MCi5hUAwzCynjt6wDDWcVS8A2+6PLBnTbkTaNtXFPIR3RnxN9lljbSyLXmTDs2snaEP5Xa2QYHzb7QqUZguLjRXEmKWo6jIm2hQGOsucM40a4v1LeZYZxdGEWXQjB5Ml/zc1uJdiv7F3ulY+O8zgKZJNskR0SkANyRE7JBakSTh7IE3khr96j9+y9ee/j1ikvn9kgv+R9fgM+vaB9</latexit>

On ⌘ BottomLeftOn t BottomRightOn

• 22%

• 42%

• 36%

<latexit sha1_base64="8P2VB3aTrMfwRGcj2l0iPXufQiM=">AAACE3icbZC7SgNBFIZnvcZ4W7W0GQyCWIRdCWoZtLEQjJIbZEOYnZxNhszObmZmAyHkHWx8FRsLRWxt7HwbZ5MUmvjDwM93zuHM+f2YM6Ud59taWl5ZXVvPbGQ3t7Z3du29/aqKEkmhQiMeybpPFHAmoKKZ5lCPJZDQ51Dze9dpvTYAqVgkynoYQzMkHcECRok2qGWfeirAdwJ70E/YwMPlKL6FQKdE9WkSp+CBdbqGtOyck3cmwovGnZkcmqnUsr+8dkSTEISmnCjVcJ1YN0dEakY5jLNeoiAmtEc60DBWkBBUczS5aYyPDWnjIJLmCY0n9PfEiIRKDUPfdIZEd9V8LYX/1RqJDi6bIybiRIOg00VBwrGOcBoQbjMJVPOhMYRKZv6KaZdIQrWJMWtCcOdPXjTVs7x7ni/cF3LFq1kcGXSIjtAJctEFKqIbVEIVRNEjekav6M16sl6sd+tj2rpkzWYO0B9Znz8oPZ29</latexit>

On ⌘ TopLeftOn t TopRightOn

<latexit sha1_base64="bEHNS77EpAPc0ph0xMyZyKjtZcY=">AAACGXicbZBNSwMxEIazftb6VfXoJVgET2VXRD2KXjwIfmBtoVtKNp1tg9lkTWaFUvo3vPhXvHhQxKOe/Dem7R60+kLg5ZkZJvNGqRQWff/Lm5qemZ2bLywUF5eWV1ZLa+s3VmeGQ5VrqU09YhakUFBFgRLqqQGWRBJq0e3JsF67B2OFVtfYS6GZsI4SseAMHWqV/NDG9FzREO4ycR/SY42okzOIcQjtHc/SnF2JTtfBVqnsV/yR6F8T5KZMcl20Sh9hW/MsAYVcMmsbgZ9is88MCi5hUAwzCynjt6wDDWcVS8A2+6PLBnTbkTaNtXFPIR3RnxN9lljbSyLXmTDs2snaEP5Xa2QYHzb7QqUZguLjRXEmKWo6jIm2hQGOsucM40a4v1LeZYZxdGEWXQjB5Ml/zc1uJdiv7F3ulY+O8zgKZJNskR0SkANyRE7JBakSTh7IE3khr96j9+y9ee/j1ikvn9kgv+R9fgM+vaB9</latexit>

On ⌘ BottomLeftOn t BottomRightOn

<latexit sha1_base64="l6Z/PS/hjpzl9gyDI/KZ3YLGE8Q=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEVyWRoi6L3bizgn1AE8pkOmmHziPMTIRSiht/xY0LRdz6Fe78G6dpFtp64MLhnHu5954oYVQbz/t2Ciura+sbxc3S1vbO7p67f9DSMlWYNLFkUnUipAmjgjQNNYx0EkUQjxhpR6P6zG8/EKWpFPdmnJCQo4GgMcXIWKnnHgU6hrdmSFQA65JHVGSGDoKeW/YqXga4TPyclEGORs/9CvoSp5wIgxnSuut7iQknSBmKGZmWglSTBOERGpCupQJxosNJ9sIUnlqlD2OpbAkDM/X3xARxrcc8sp0cmaFe9Gbif143NfFVOKEiSQ0ReL4oThk0Es7ygH2qCDZsbAnCitpbIR4ihbCxqZVsCP7iy8ukdV7xLyrVu2q5dp3HUQTH4AScAR9cghq4AQ3QBBg8gmfwCt6cJ+fFeXc+5q0FJ585BH/gfP4A4WmXHw==</latexit>

Other Combinations

Importance of the Mappings
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• Our method
• Induces theories that are faithful to a neural 

network’s classifications
• Deals with unnecessary concepts
• Induces theories at different levels of 

abstraction
• Is applicable even when few labeled data is 

available

Conclusions

• More challenging datasets
• Recurrent Networks
• Neuron Selection
• Concept finding
• Concept whitening

Future Work

Ferreira, de Sousa Ribeiro, Gonçalves and L, 
Looking Inside the Black-Box: Logic-based 
Explanations for Neural Networks, In KR’22
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