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Logic Based » Existing neural network-based systems
Explanations for oroved to be:

Neural Networks - Capable of analyzing and classifying text, image,
video and speech;

* Able to act autonomously, making decisions
previously made by humans.

e A @

The need for humans to understand their

reasoning becomes evident
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Justifications or Explanations

* Allow users to build trust in a model and its results;

* Increase the chances of users acting based on models’
outputs;

» Lead to better assessment of when a system is right or
wrong.

|deally, neural networks would have the ability

to explain or justify their results
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However...

* Neural networks use representations based on high-
dimensional data.

« Do not provide human interpretable indications of why a
specific output was produced

We need a human-understandable language
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Ontology / Background Theory

* Provides a conceptualization of a domain, describing
how concepts are related with each other

« Usually specified using a logic-based language with a
precise semantics

« E.g. ASP or DL

Train = Jhas.(Wagon LI Locomotive)
WarTrain O Jhas.ReinforcedCar M Jhas.PassengerCar
EmptyTrain = Vhas.(EmptyWagon U Locomotive) M Fhas.EmptyWagon
PassengerTrain J Jhas.(PassengerCar M LongWagon) LI (> 2 has.PassengerCar)
LongFreightTrain = LongTrain I FreightTrain
LongTrain 3 (> 2 has.LongWagon) LI (> 3 has.Wagon)
FreightTrain 3 (> 2 has.FreightWagon)
RuralTrain J Jhas.EmptyWagon M Jhas.(PassengerCar LI FreightWagon)
M —dhas.LongWagon
Mixed Train 3 Jhas.FreightWagon " dhas.PassengerCar M Jhas.EmptyWagon
TypeA = WarTrain LI EmptyTrain
TypeB = PassengerTrain L LongFreightTrain
TypeC = RuralTrain L Mixed Train
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de Sousa Ribeiro & L, Aligning Artificial Neural

Networks and Ontologies towards Explainable Al,

In AAAI'21

c,=C,,U(C,,Nn-C
Background 1= CaUC,M=Cp)

Knowledge c, E."_'CMZU Cu

How to relate both Systems

main network N
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Coi mapping networks Citm

selection tensor selection tensor
B R S S AN LITTIAACAC A A bb Ay

main network N




[Backgmund

C, =C,,U(Cy,M=Cyy)
Knowledge c, _ L C,,UC,,,

Logic Based

EX p I a n ati O n S fo r ) Cun mappi'ng netlvorks Cit

Neural Networks % Mc% \

selection tensor selection tensor
B R S S AN LITTIAACAC A A bb Ay
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de Sousa Ribeiro & L, Aligning Artificial Neural

Networks and Ontologies towards Explainable Al,
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» Do different languages lead to different justifications?

« Based on the cartesian coordinate system.

« Based on the spherical coordinate system.
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= Relevant and Non-Relevant Concepts

Logic Based

. . . : | it
EXplanatlonS for If a concept is relevant, will we be able to extract it
Neural Networks Bl st of the Mappings
* Is there a benefit to using the activations of the main
network?

mmw  Meaning of the Extracted Concepts

* Do the extracted concepts correspond to our
understanding?

e Origin of the Extracted Concepts

* s it possible to pinpoint the neurons necessary to extract a
given concept?

o= Justifications

* How good are the justifications obtained?

de Sousa Ribeiro & L, Aligning Artificial Neural

Networks and Ontologies towards Explainable Al,
[aWAVAVAY 02|
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XTRAINS Dataset
bitbucket.org/xtrains/dataset
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XTRAINS Dataset
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Type A

* trains having either a wagon with at least a circle inside
and a wagon with two walls in each side, or no wagons
with geometric figures inside them.

Type B

« trains having a long wagon or two wagons with at least a
circle inside, or trains having at least two long wagons, or
three wagons, with at least two of which with a geometric
figure inside.

Type C

« trains having a wagon with no geometric figure inside, and
either a wagon with a circle inside and a wagon with a
geometric figure inside that is not a circle, or no long
wagons and a wagon with a figure inside.
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XTRAINS Dataset
bitbucket.org/xtrains/dataset

mm  XTRAINS Ontology (partial)

Train = Jhas.(Wagon LI Locomotive)
WarTrain J Jhas.ReinforcedCar M Jhas.PassengerCar
EmptyTrain = Vhas.(EmptyWagon LI Locomotive) M Jhas.EmptyWagon
PassengerTrain 1 Jhas.(PassengerCar M LongWagon) LI (> 2 has.PassengerCar)
LongFreightTrain = LongTrain M FreightTrain
LongTrain J (> 2 has.LongWagon) U (> 3 has.Wagon)
FreightTrain J (> 2 has.FreightWagon)
RuralTrain J 3has.EmptyWagon M Jhas.(PassengerCar LI FreightWagon)
M —dhas.LongWagon
MixedTrain 2 Jhas.FreightWagon ' dhas.PassengerCar ' dhas.EmptyWagon
TypeA = WarTrain LI EmptyTrain
TypeB = PassengerTrain LI LongFreightTrain
TypeC = RuralTrain LI MixedTrain
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Relevant and Non-Relevant
Concepts

Relevant and Non-Relevant Concepts

* If a concept is relevant, will we be able to extract it?

“abcdefghijk abecdef

NNa

Accuracy

a - Jhas.FreightWagon e - PassengerTrain i - RuralTrain

b - WarTrain f - LongTrain j - MixedTrain

¢ - EmptyTrain g - FreightTrain k - Jhas.OpenRoofCar
d - dhas.ReinforcedCar h - Jhas.LongWagon

Relevant concepts are extracted with the
highest accuracy values
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Cost of the Mappings

mmm CoOst of the Mappings

* |s there a benefit to using the activations of the main

network?
NNa NNg NNc
1.0 — — f/_
Thas.FreightWagon Jhas.FreightWagon Jhas.FreightWagon
1.0 ———— ﬁ,— —
>, 0.5 --"“""—'——_/— R B Bt ,_
8 WarTrain PassengerTrain RuralTrain
Lo — [ ——
< S I
0.5 T o . .
EmptyTrain LongTrain Mixed Train
1.0 //__ //7
0.5 T _ N I
dhas.ReinforcedCar FreightTrain Jhas.LongWagon

Mapping networks require few labeled training

0 1000 O 1000 O 1000
Training Samples
—— Mapping = Convolutional

data
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Meaning of the Extracted
Concepts

Meaning of the Extracted Concepts

* Do the extracted concepts correspond to our
understanding?

Mapping networks properly identify the visual
features embodying each concept
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Origin of the Extracted
Concepts

s Origin of the Extracted Concepts

* |s it possible to pinpoint the neurons necessary to
extract a given concept?

Input Reduce procedure

« Searches for the smallest set of inputs achieving
the highest accuracy to extract a given concept;

* On average, decreased the mapping networks’
input by 95%;

» Resulting mapping networks achieved similar
accuracies to those trained using all neurons
from the dense layers of the main network.
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* |s it possible to pinpoint the neurons necessary to
extract a given concept?

Dense Layers Input Reduce
Output Concept Accuracy antures Accuracy | Features
Jhas.FreightWagon| 0.9367 10480 0.9263 453
_. < WarTrain| 09719 10480 0.9930 4
Origin of the Extracted = EmptyTrain| 09937 10480| 0.9942 2
Concepts Jhas.ReinforcedCar| 0.9950 10480 0.9928 4
Jhas.FreightWagon| 0.9676 10464| 0.9629 2374
2 PassengerTrain| 0.9485 10464| 0.9433 1107
= LongTrain| 0.9670 10464 0.9701 534
FreightTrain| 0.9523 10464 0.9493 1247
dhas.FreightWagon| 0.9459 10608| 0.9500 519
S RuralTrain| 0.9820 10608| 0.9916 7
= MixedTrain| 0.9484 10608 0.9750 14
Jhas.LongWagon| 0.9813 10608 0.9814 12

It is possible to pinpoint the neurons necessary

to extract a given concept
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» How good are the justifications obtained?

LongTrain(iy)
FreightTrain(i1)

Justifications LongFreightTrain = LongTrain N FreightTrain

TypeB = PassengerTrain Ll LongFreightTrain

All Correct|Some Correct|None Correct|No Justifications
NNa| 85.5% 14.3% 0.2% 0.0%
NNg| 94.2% 2.1% 0.7% 3.0%
NNc| 90.6% 8.9% 0.1% 0.4%

The resulting justifications were correct in most

CasSes
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Relevant and Non-Relevant Concepts

» Relevant concepts are extracted with the highest accuracy
values

Cost of the Mappings

» Mapping networks require few labeled training data

Meaning of the Extracted Concepts

« Mapping networks properly identify the visual features
embodying each concept

Origin of the Extracted Concepts

* It is possible to pinpoint the neurons necessary to extract a
given concept

Justifications

* The resulting justifications were correct in 90% of the cases
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What if we do not have the ontology?
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main network N
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Induction System ]: rrrrrrrr :

Coi mapping networks Citm

selection tensor selection tensor
B R S S AN LITTIAACAC A A bb Ay
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C,=C,,U(C,,N-C,)
Induced Theory
C,=~Cy,UCy,

. F
Log IC B ased [ Induction System ]:

EX p I a n ati O n S fo r ) Cun mappi'ng net:vorks Cit

Neural Networks % Mc% \

selection tensor selection tensor
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Looking Inside the Black-Box: Logic-based
Explanations for Neural Networks, In KR’22
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C,=C,,U(C,,N-C,)

Induced Theory
C,=-C,,LIC,,,
Coi mapping networks Citm
4 N\ 4 N\
MCI MCm

[ selection tensor ]

selection tensor
LITTTAAAA A b h Ay

AL A Ay

Explanation

Abduction
System

main network N




Logic Based
Explanations for
Neural Networks

Learning the Ontology

Ferreira, de Sousa Ribeiro, Gongalves and L,
Looking Inside the Black-Box: Logic-based
Explanations for Neural Networks, In KR’22

Dataset’s Ontology

TypeA = WarTrain LU EmptyTrain
TypeB = PassengerTrain LI LongFreightTrain
TypeC = MixedTrain LI RuralTrain

Mapped Concepts

EmptyTrain, FreightTrain, LongTrain
MixedTrain, PassengerTrain, RuralTrain
WarTrain, Jhas.FreightWagon, Fhas.Long\Wagon
Jhas.OpenRoof, Fhas.ReinforcedCar

Learned Ontology

TypeA = WarTrain LI EmptyTrain

TypeB = (FreightTrain M1 LongTrain)
LI (PassengerTrain M —=EmptyTrain)

TypeC = MixedTrain LI RuralTrain

Fidelity Scores

99.72 £ 0.18% | 99.92 + 0.35%
98.71 £ 0.31% | 99.83 £ 0.76%
99.33 £0.32% | 99.52 £ 1.52%




Train-Level Concepts Wagon-Level Concepts

Logic Based

Expl " f Mapped Concepts Mapped Concepts
Xp ana Ions Or EmptyTrain, LongFreightTrain, MixedTrain, Jhas.EmptyWagon, Jhas.FreightWagon,
N eura I N etWO rks PassengerTrain, RuralTrain, WarTrain Jhas.LongWagon,

TJhas.(LongWagon M PassengerCar),
Jhas.PassengerCar, Fhas.ReinforcedCar,

> 2has.FreightWagon, > 2has.LongWagon,
> 2has.PassengerCar, > 3has.Wagon

Levels of Abstraction _
Learned ontologies Learned ontologies

TypeA = EmptyTrain LI WarTrain TypeA = (Jhas.PassengerCar Ll =3has.FreightWagon)

TypeB = LongFreightTrain LI PassengerTrain M (3has.ReinforcedCar LI —~Jhas.PassengerCar)

) i ) TypeB = Jhas.(LongWagon M PassengerCar)
TypeC = MixedTrain U RuralTrain LI (> 3has.Wagon 1 > 2has.FreightWagon)

TypeC = Jhas.EmptyWagon M (—3has.LongWagon
LI (> 3has.Wagon M Jhas.PassengerCar))

Fidelity Scores Fidelity Scores
FMain FXTrains FMm'n FXTrains
et do Gouss [Eisie, Commeles end L My | 99.76 £ 0.19% | 100.00 £ 0.0% My | 94.55+10.14% | 94.44 £11.12%
Looking,Inside o [Ble e Logic-based ’ My | 98.82 4+ 0.39% | 100.00 £ 0.0% My | 97.50 £ 0.52% 96.73 £ 1.18%
Explanations for Neural Networks, In KR’22 My | 99.46 + 0.20% | 100.00 £ 0.0% My | 98.16 £0.36% | 99.02 £ 0.56%




Dataset’s Ontology Learned ontology

Log IC Based TypeA = WarTrain LI EmptyTrain TypeA=T
EXpla nations for TypeB = PassengerTrain LI LongFreightTrain TypeB = > 3has.Wagon Ul LongFreightTrain
Neural Networks

TypeC = (> 3has.Wagon 1 Jhas.PassengerCar)L
LI (—(> 2has.PassengerCar)ri
M —3has.LongWagon)

TypeC = MixedTrain LI RuralTrain

« Sampled 20 random sets of 5 Fidelity Scores
Insufficient Concepts concepts
« Trained mapping networks for Tt F———
each main network My | 50.16 £ 0.26% | 50.00 % 0.00%
» Learned Theories Mp | 92.53 £2.75% | 92.70 + 1.43%
. Average F|de||ty scores Mc | 76.78 £1.99% | 76.99 £ 0.94%

o 72.6% (Fpain)
* 71 -90/0 (FXTrains)

Mapped Concepts

LongFreightTrain, Jhas.LongWagon,

. > .
Ferreira, de Sousa Ribeiro, Gongalves and L, has.PassengerCar, > 3has.Wagon,

Looking Inside the Black-Box: Logic-based > 2has.PassengerCar
Explanations for Neural Networks, In KR’22
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Importance of the Mappings

Ferreira, de Sousa Ribeiro, Gongalves and L,
Looking Inside the Black-Box: Logic-based
Explanations for Neural Networks, In KR’22

Modified Dataset

Baseline

* Trained 50 main networks

» Learned Theories using dataset
labels

» Always obtained*

On = BottomLeftOn LI BottomRightOn

Modified Dataset’s Ontology

On = TopLeftOn U TopRightOn
On = BottomLeftOn L BottomRightOn

Using Mapping Networks
22%
On = TopLeftOn LI TopRightOn
42%
On = BottomLeftOn LI BottomRightOn

36%
Other Combinations
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Ferreira, de Sousa Ribeiro, Gongalves and L,
Looking Inside the Black-Box: Logic-based
Explanations for Neural Networks, In KR’22

== Conclusions

e Our method

* Induces theories that are faithful to a neural
network’s classifications

* Deals with unnecessary concepts

* Induces theories at different levels of
abstraction

* Is applicable even when few labeled data is
available

= Future Work

* More challenging datasets
* Recurrent Networks

* Neuron Selection

» Concept finding

» Concept whitening
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