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Goals

Introduce
Explanations

What are post hoc
explanations, and why
should you care?

Where do
they fall

short?

What are the issues with
these methods?

How can we
do better?

How are we working to
fix these issues?
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My Awesome Classifier Idea

Let’s build a model to classity and dogs!

2022




Bird or Dog?

Deep Neural Network

2022




Bird or Dog? @

Deep Neural Network > Dog!

2022
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Let’s Build a Model

Collect Data
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Let’s Build a Model

@ Train Model

Deep Neural Network @{}
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2022

Let’s Build a Model
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Predict!

Deep Neural Network

Dog!

Dog!

Awesome!




We've built a black-box!

2022
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Does it make decisions for the Do I know why this model is

right reasons? making decisions?

If something goes wrong, can I

fix ic?
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Failures abound

Deep Neural Network

Why is the model bad in-the-wild?
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Post hoc Explanations

2022
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® Show important parts of the image for prediction

Image Explanation

-

Image Explanation

Uh oh, looks like we’ve
built a couch detector!
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In the Real World

® Al interview system uses image background

Objective or Biased

BACKGROUND

AL baiaai  em——

iR, AL\ &l £\
'ul AER J.]
W o b

m/E ’ﬂl 77 0wl
'I \ Jll-‘ﬂ.

OCEAN RESULTS

Openness — original ® Bookshelf
Consclentlousness —
Extraversion —
Agreeableness -

Neuroticism -

[Source: Washington Post]
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Post hoc Explanations

What are they, and why care?
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Explaining Predictions

What parts of the data are most responsible for predictions?

e

Income: 75,000

x could be:

“The quick brown fox
Age: 32

jumps over the lazy

dogw

Credit Score: 720

2022
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Model Agnostic Local Explanations

Complex, global decision surface

&

Difficult to eXplain entire decision surface
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Model Agnostic Local Explanations

Complex, global decision surface

&

Instead give locaﬂy accurate eXplanation for a single point

2022




Model Agnostic Local Explanations

Complex, global decision surface

Q

Instead give locaﬂy accurate eXplanation for a single point

2022
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Model Agnostic Local Explanations

Complex, global decision surface

Local eXplanation 1S interpretable, loeally accurate model

2022
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Model Agnostic =

We can run
explanations for
any model!




We can do this for any model!
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2022

LIME

Perturbations Class Probability

Classifier é@é} o 3 0.7

Original Image

JIe

Classifier é@é} A 0.5

Classifier é@{é - o, s 0.9




2022

Weighted regression
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Tradeofts of Local Model Agnostic Method:s

Advantages

O Only needs black-box access!
® FEasy to use

® Highly flexible

O Perturbations, 1ocality, precision can all be customized

e Helpful for understanding model behavior
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Tradeofts of Local Model Agnostic Method:s

Disadvantages

Explanations are highly

sensitive to the perturbations o
o
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Tradeofts of Local Model Agnostic Method:s

Consequences

® Unstable
® Have difficult to set hyperparameters
® Hard to determine when you have a “good” explanation

< Undear Whﬁfn CO trust explanations >
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Can We Fool Post Hoc
Explanations?

Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack®, Sophie Hilgard*, Emily Jia, Sameer Singh, and Hima Lakkaraju
AIES 2020

2022
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Setup

Data
Income
Race
Gender
Age
Credit Score

Bad Actor

Classifier

Discriminatory
Decisions

|

Do post hoc explanations tell us

the model is fair?

&

2022
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Setup

Data
Income
Race
Gender
Age
Credit Score

Bad Actor

Classifier

J

Discriminatory
Decisions
Looks fair!
N

&

2022
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How is this possible?

2022

Original Image

v

This image is realistic,
I'll be very

discriminatory!

Y

Sampled Perturbations From LIME

o T

Classifier @%}

Y

These are perturbations, I'll behave fairly!
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Compas Recidivism Dataset

2nd

% Occurence

2022

3rd

Il African-American Uncorrelated Feature 1 B Uncorrelated Feature 2

< The model only uses the “race” feature!

Others

31



Compas Recidivism Dataset

2nd

LIME

% Occurence

2022

@
a

Il African-American B Uncorrelated Feature 1 B Uncorrelated Feature 2

<The explanations don’t show race is important!

Others
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Compas Recidivism Dataset

2022

LIME

Q _
O
=
o
O
(@)
X
3rd
Il African-American B Uncorrelated Feature 1 B Uncorrelated Feature 2 Others

<The explanations don’t show race is important! >
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Other types of
explanations can be
attacked




Counterfactual Explanations

I want a loan!
’@‘ Classifier % Denied

[

)
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How CFE’s Work!

—
, _—
% C /

Denied Loan

Objective: G(x, ¢)
Maximize: cis in desired class

Minimize: Dithculty of ¢
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CFE’s Can Be Attacked e @

é@@ }

Bad Actor
Classifier 1
Bad Actor,
“Shhh!” J

< CFE’s are very easy to achieve under attack! )
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Why Does This Attack Work?

Key Idea , : CFE search converges to different local minimums
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Counterfactual Explanations Can Be Manipulated
Dylan Slack, Sophie Hilgard, Hima Lakkaraju, and Sameer Singh
NeurlIPS 2021
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Building More Reliable

Explanations

Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Dylan Slack®, Sophie Hilgard, Sameer Singh, and Hima Lakkaraju
NeurlPS 2021

2022
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Highlighting Issues With LIME

Two explanations on the same instance, Red: Negative Contribution

Green: Positive Contribution

different hyperparameters

Female Female |
Misdemeanor Charge I Misdemeanor Charge ‘
000 005 010 015 020 025 030 000 005 010 015 020 025 030
Absolute Feature Importance Absolute Feature Importance
200 Perturbations 2,000 Perturbations
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Uncertainty is the Solution!

Deﬁne feature importances as Red: Negative Contribution
distributions Green: Positive Contribution
Female Female I
Misdemeanor Charge | Misdemeanor Charge |
000 005 010 015 020 025 030 000 005 010 015 020 025 030
Absolute Feature Importance Absolute Feature Importance
200 Perturbations 2,000 Perturbations
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Visualizing Uncertainty In Explanations

LIME BayesLIME
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Formulation

zZ,p,€ ~ ngz

Y

¢ : Feature Importance

7 : Perturbations
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Formulation

zZ,p,€ ~ ngz

Y

¢ : Feature Importance

7 : Perturbations
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Formulation

0.2

T ~
zZ, 0, € ¢ z+€ e ~ N(0, p_—

Yy

)

¢: Feature Importance
7 : Perturbations

Ty (Z): Weighting Function
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Formulation

0.2

7x (2)
45‘02 ~ N (0, 5°T) o® ~ Inv-y*(no, ag),

zde ~ ¢lz+e e ~ N(0,

Yy

)

¢: Feature Importance
7 : Perturbations

Ty (Z): Weighting Function
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Notions of Uncertainty

Feature Importance Uncertainty Female

Goes to zero with sufficient perturbations Misdemeanor Charge |
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Absolute Feature Importance

Linear, low error uncertainty Nonlinear, higher error uncertainty

Error Uncertainty

COHV€Ig€S to the CIrror Of the eXplanation
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Uncertainty is Calibrated

Calibration

Closer to 95.0 18 better

Darta set BayesLIME BayesSHAP
ImageNet 04.8 89.9
MNIST 97.2 90.1
COMPAS 95.5 87.9
German Credit 96.9 89.6
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Estimating Required Number of Perturbations (PTG)

|

Perturbations—to—go

(PTG)

]

“Get me an explanation with 95%
credible interval width of 0.01 for
this image!”

You need to use 7,634 perturbations!
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Estimating Required Number of Perturbations (PTG)

Linear Local Decision Surface Non-linear Local Decision Surface
\
N © < 2
o o N\ ®
_ \
Q. g N
o _= -~ @ ® N O
- N
e \
@ — o ° ® .

You probably don’t need to sample too much more! Eh, you need to sample more!



Estimating Required Number of Perturbations (PTG)

How many
perturbations —
you need

GW,a,x) =
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Estimating Required Number of Perturbations (PTG)

How many Local Error

perturbations — — Number of Sampled Perturbations

you need

4 2
G(W,a,x) = °S
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Estimating Required Number of Perturbations (PTG)

How many Local Error

perturbations — — Number of Sampled Perturbations

you need Perturbation Desired
Proximity X Uncertainty

2
455

5 — O
”SX[%@]

GW,a,x) =

54



Focused Sampling of Perturbations

Perturbations

Posterior Predictive Distribution
§(D)IZ.Y ~ iy (¢ 2. (2T Vgz +1)s%)

i i 7 -
~
Low Low Low High W
uncertainty uncertainty uncertainty uncertainty
J
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Focused Sampling of Perturbations

[ should probably sample

more over 1’161’6. .
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Benefits of Focused Sampling

Converges more quickly

BayesLIME + ImageNet
4.75;
450 //x MNIST
Imagenet
~4.25]
T / German
X 4.00
i / Compas
3.75| §
3.50| ! —— Focused Sampling
Random Sampling
3.25]

107 103
Number of Model Queries

Improves Stability

| - e

e

| -

-
-25 0 25 50 75 100

BayesLIME % Increase in Stability
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Conclusion

® We need methods to figure out whether to trust ML models
® DPost hoc explanations can help us figure this out

0 Revealing “why” models make decisions

o Very flexible
® However, there are shortcomings to post hoc explanations

® MOd@hﬁg uncertainty helps us overcome some Challenges
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