

Post Hoc Explanations For ML

Exposing Shortcomings and Improving Reliability

Dylan Slack
UC Irvine

Goals

*Introduce
Explanations*

What are post hoc explanations, and why should you care?

*Where do
they fall
short?*

What are the issues with these methods?

*How can we
do better?*

How are we working to fix these issues?

Collaborators

Sophie Hilgard

Hima Lakkaraju

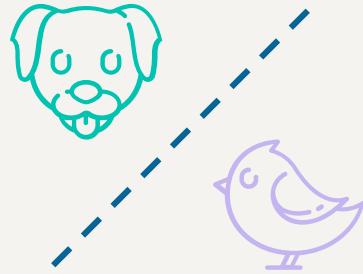
Sameer Singh

Emily Jia

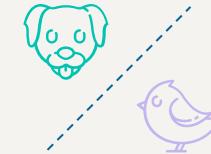
With Support From

My Awesome Classifier Idea

Let's build a model to classify **birds** and **dogs**!



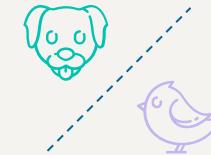
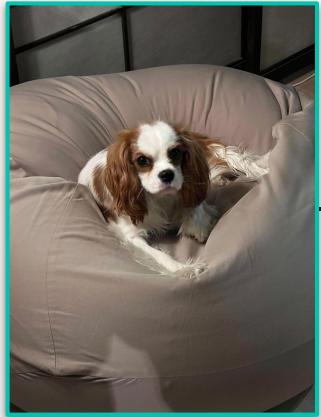
Bird or Dog?



Deep Neural Network

Bird!

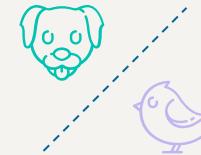
Bird or Dog?



Deep Neural Network

Dog!

Let's Build a Model

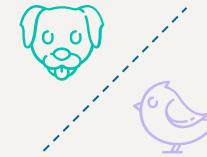


Collect Data

2022



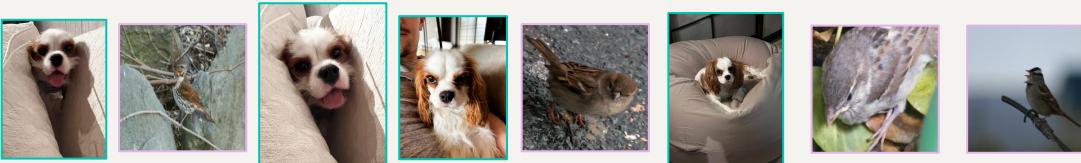
Let's Build a Model



O2

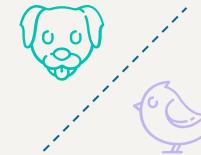
Train Model

2022



Deep Neural Network

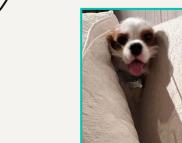
Let's Build a Model



03

Predict!

2022



Deep Neural Network

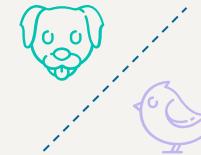
Dog!

Bird!

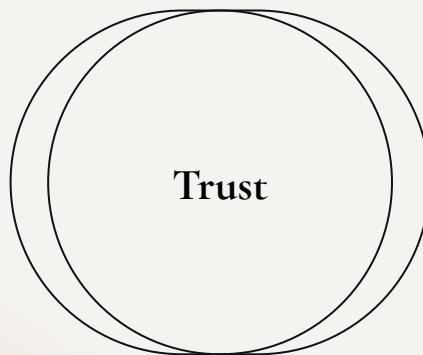
Dog!

Awesome!

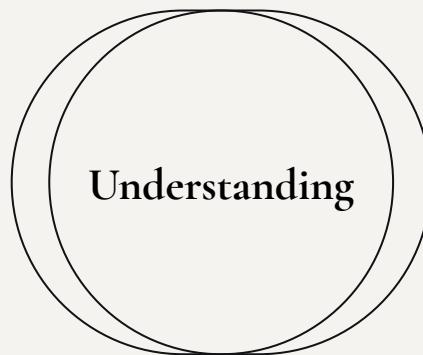
We've built a black-box!



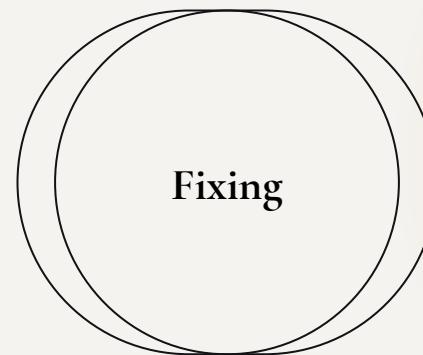
2022



Does it make decisions for the right reasons?

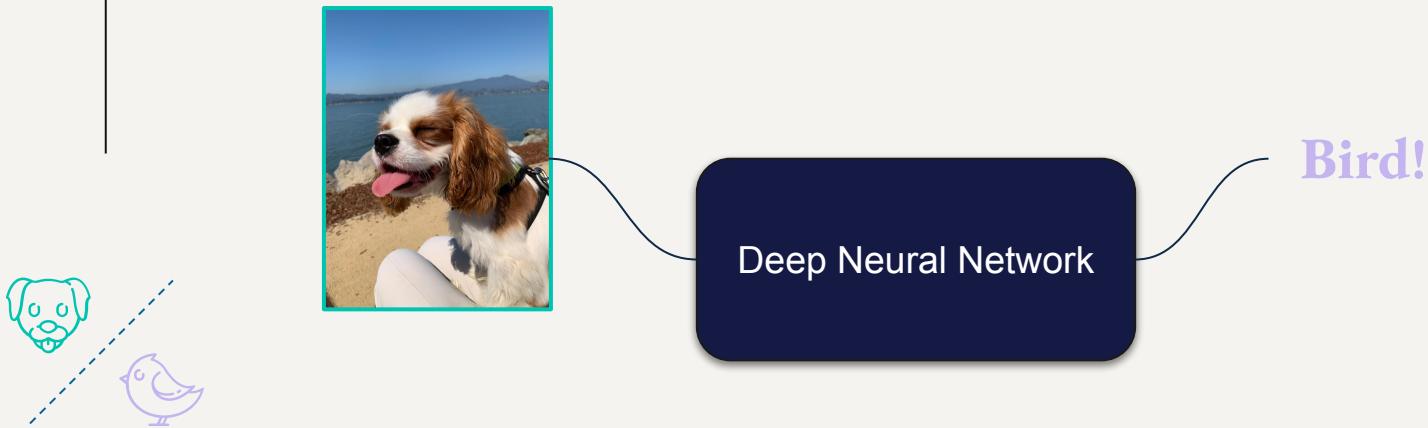


Do I know why this model is making decisions?



If something goes wrong, can I fix it?

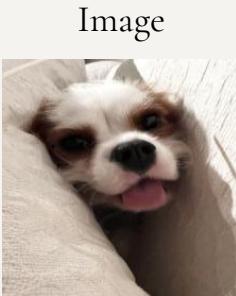
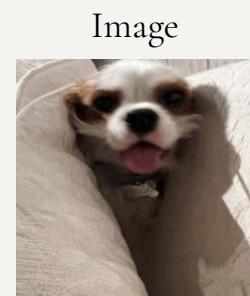
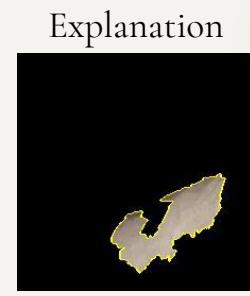
Failures abound



Why is the model bad in-the-wild?

Post hoc Explanations

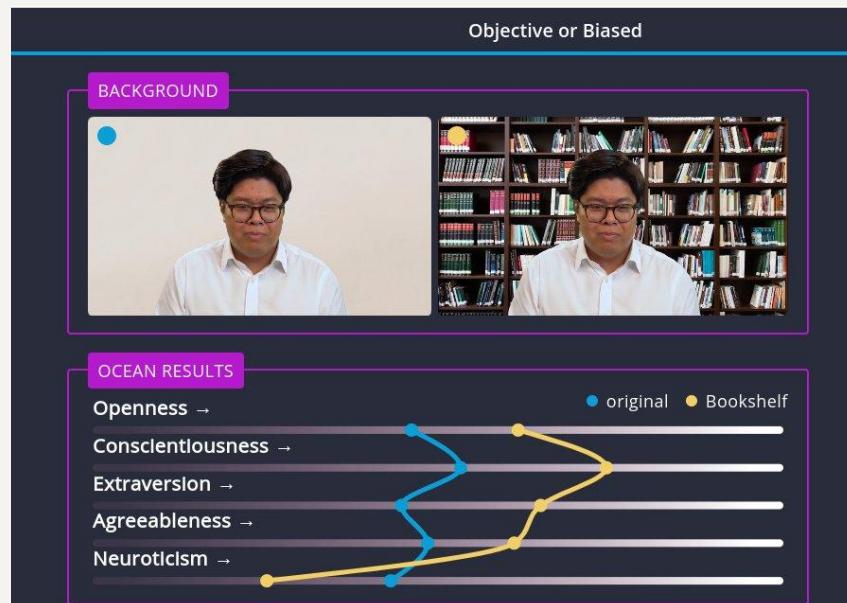
- Show important parts of the image for prediction



Uh oh, looks like we've
built a couch detector!

In the Real World

- AI interview system uses image background



[Source: Washington Post]

Post hoc Explanations

What are they, and why care?

Explaining Predictions

What parts of the data are most responsible for predictions?

x could be:

“The quick brown fox
jumps over the lazy
dog”

Income: 75,000

Age: 32

Credit Score: 720

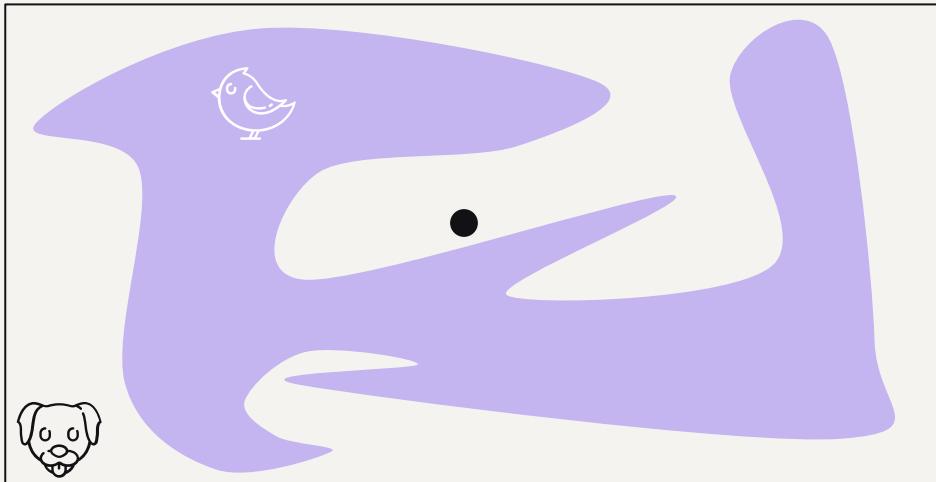
Model Agnostic Local Explanations

Complex, global decision surface

Difficult to explain entire decision surface

Model Agnostic Local Explanations

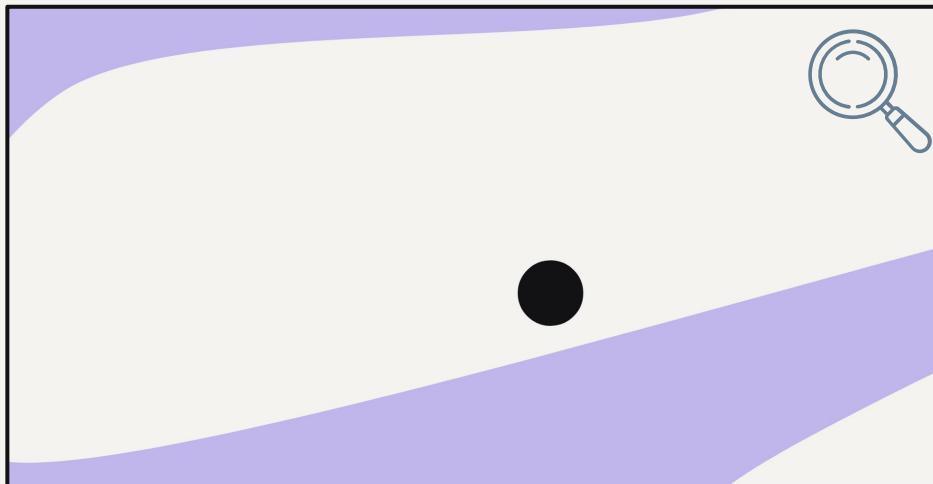
Complex, global decision surface



Instead give locally accurate explanation for a single point

Model Agnostic Local Explanations

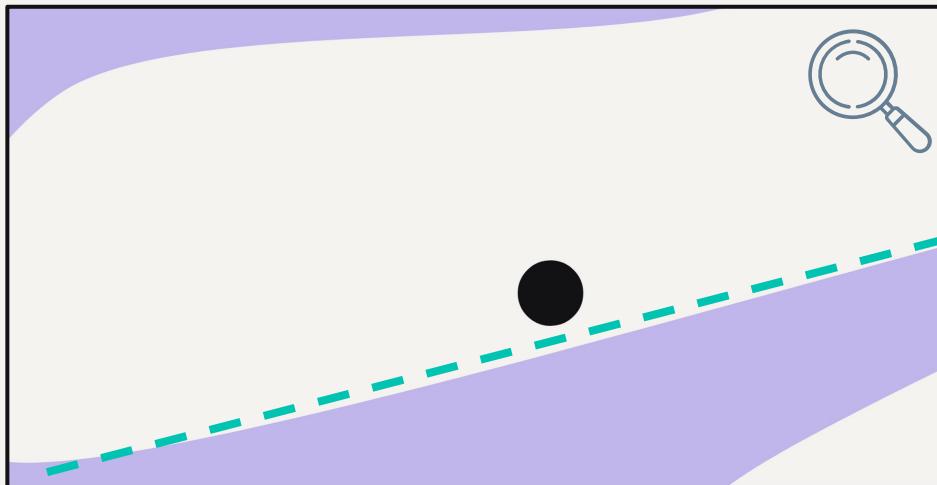
Complex, global decision surface



Instead give locally accurate explanation for a single point

Model Agnostic Local Explanations

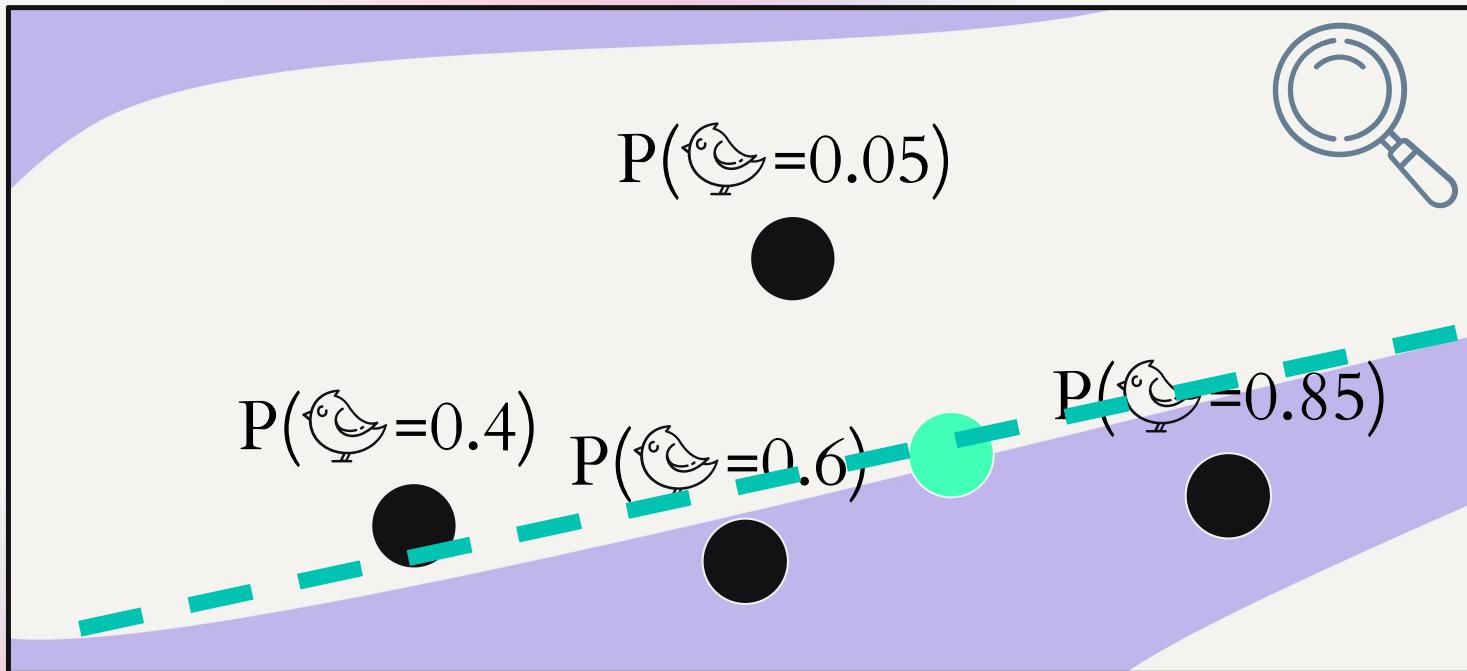
Complex, global decision surface



Local explanation is interpretable, locally accurate model

Model Agnostic =
We can run
explanations for
any model!

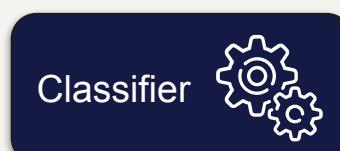
We can do this for any model!



LIME

2022

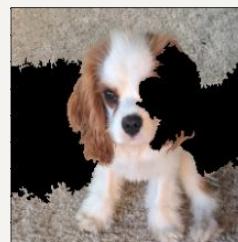
Class Probability 0.8



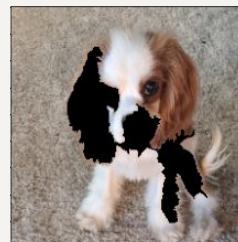
Perturbations

Class Probability

0.7



0.5

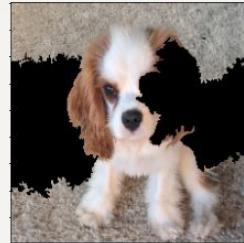


0.9

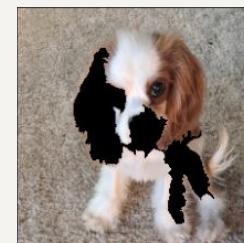
LIME

2022

0.7

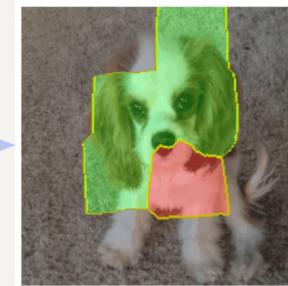


0.5



0.9

Weighted regression



Tradeoffs of Local Model Agnostic Methods

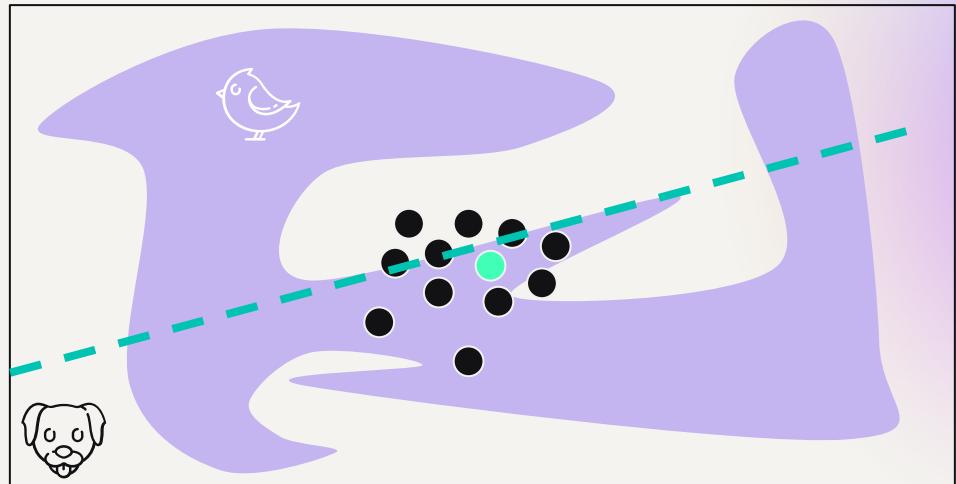
Advantages

- Only needs black-box access!
- Easy to use
- Highly flexible
 - Perturbations, locality, precision can all be customized
- Helpful for understanding model behavior

Tradeoffs of Local Model Agnostic Methods

Disadvantages

Explanations are highly sensitive to the perturbations



Tradeoffs of Local Model Agnostic Methods

Consequences

- Unstable
- Have difficult to set hyperparameters
- Hard to determine when you have a “good” explanation

Unclear when to trust explanations

Can We Fool Post Hoc Explanations?

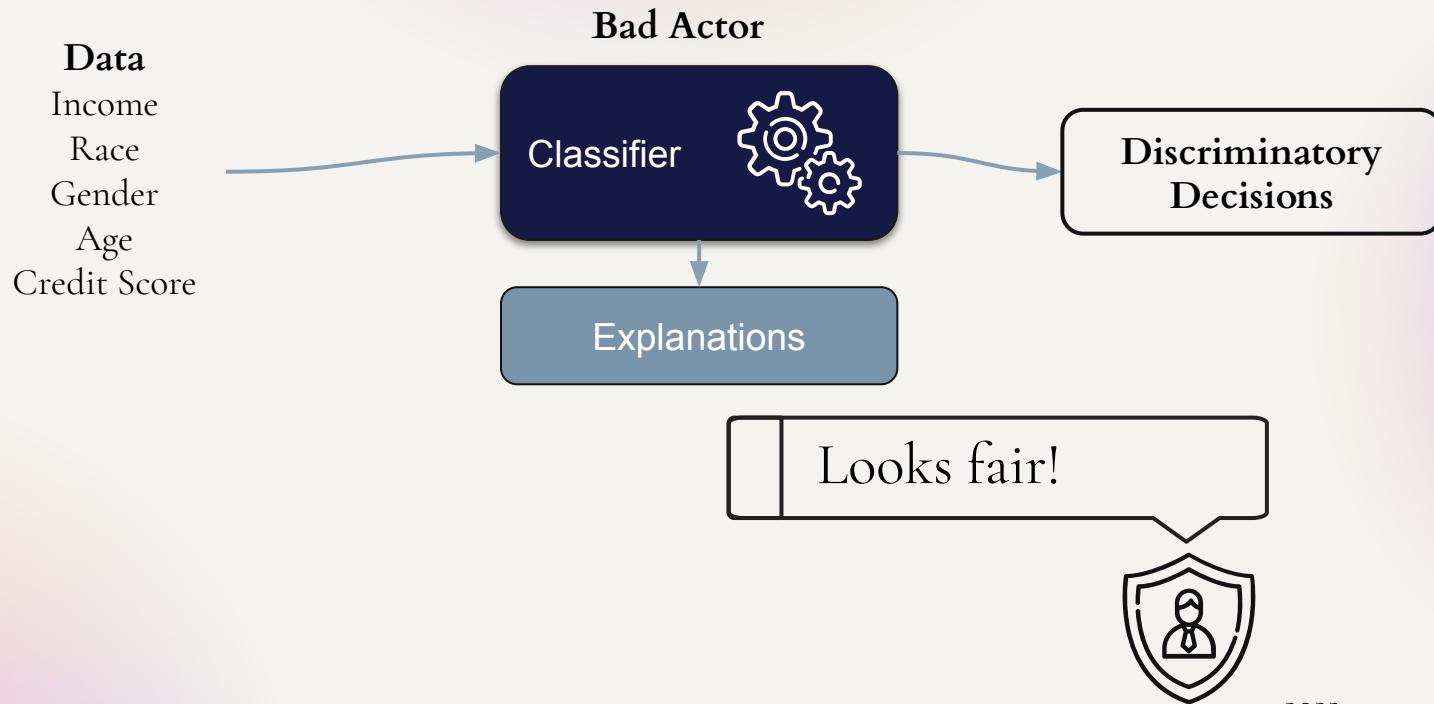
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack*, Sophie Hilgard*, Emily Jia, Sameer Singh, and Hima Lakkaraju
AIES 2020

Setup

Do post hoc explanations tell us
the model is fair?

2022

Setup

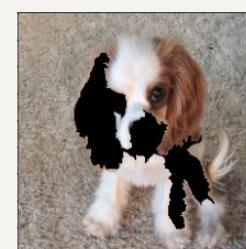


How is this possible?

2022

Original Image

Sampled Perturbations From LIME



Classifier

This image is realistic,
I'll be very
discriminatory!

These are perturbations, I'll behave fairly!

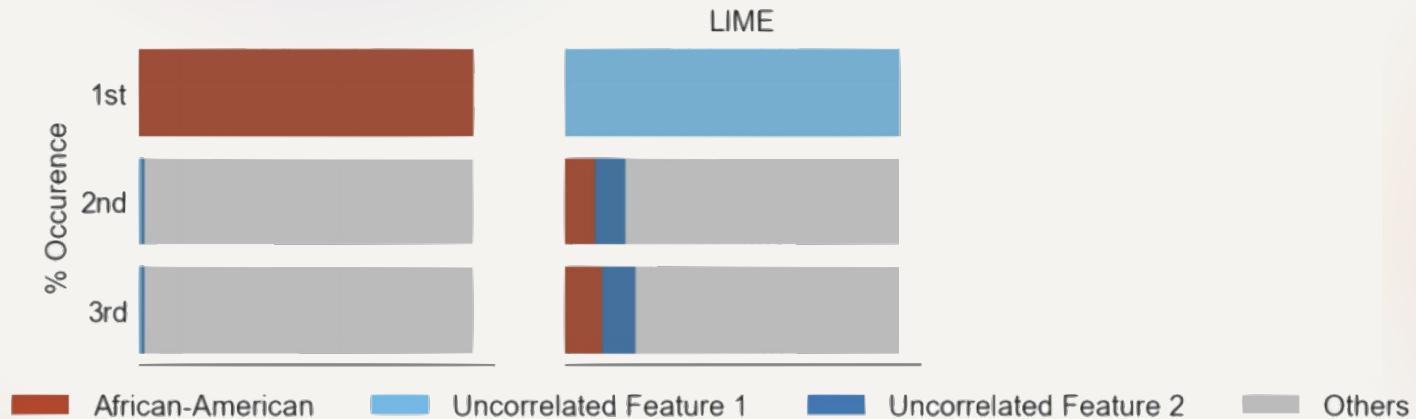
Compas Recidivism Dataset

2022

The model only uses the “race” feature!

Compas Recidivism Dataset

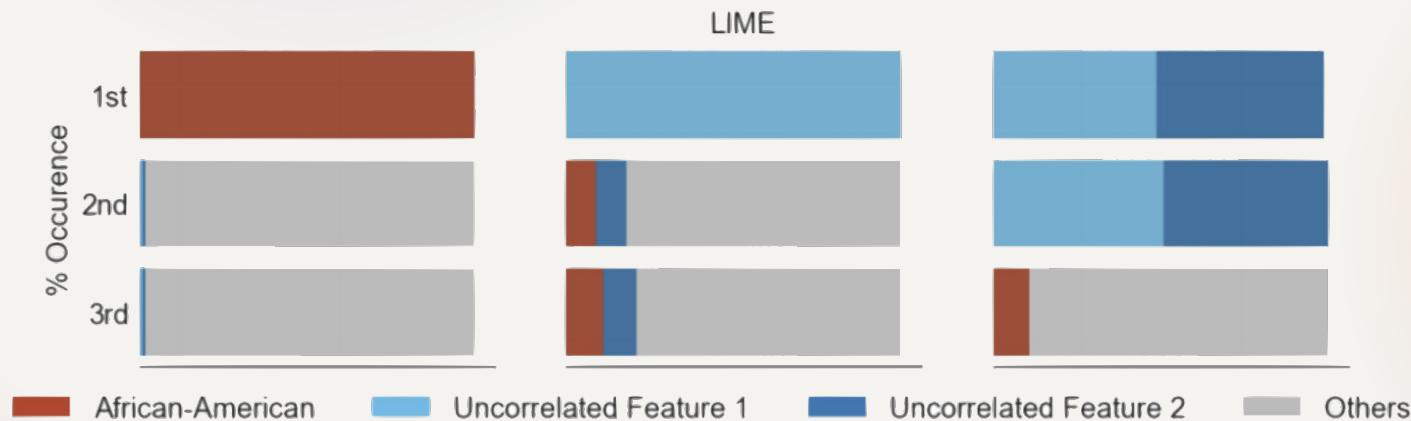
2022



The explanations don't show race is important!

Compas Recidivism Dataset

2022



The explanations don't show race is important!

Other types of
explanations can be
attacked

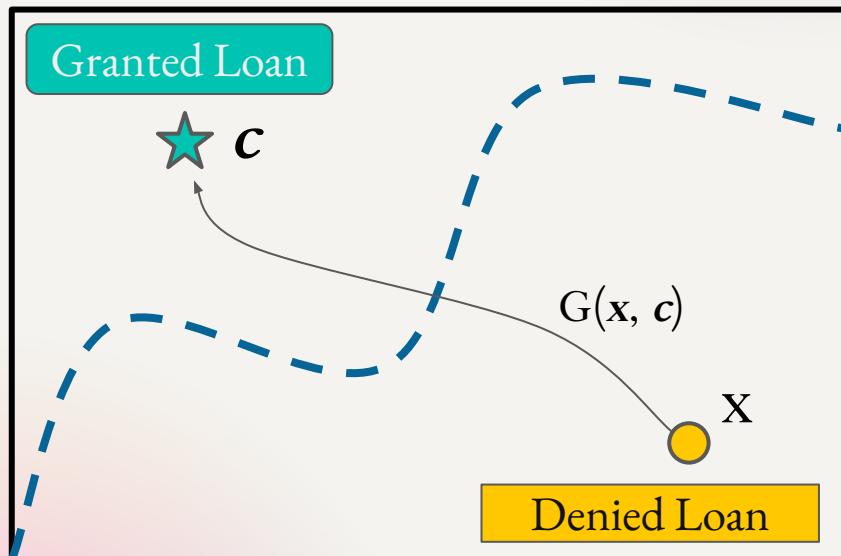
Counterfactual Explanations

I want a loan!

Denied

You need to make
\$1,000 more a year!

How CFE's Work!



Objective: $G(x, c)$

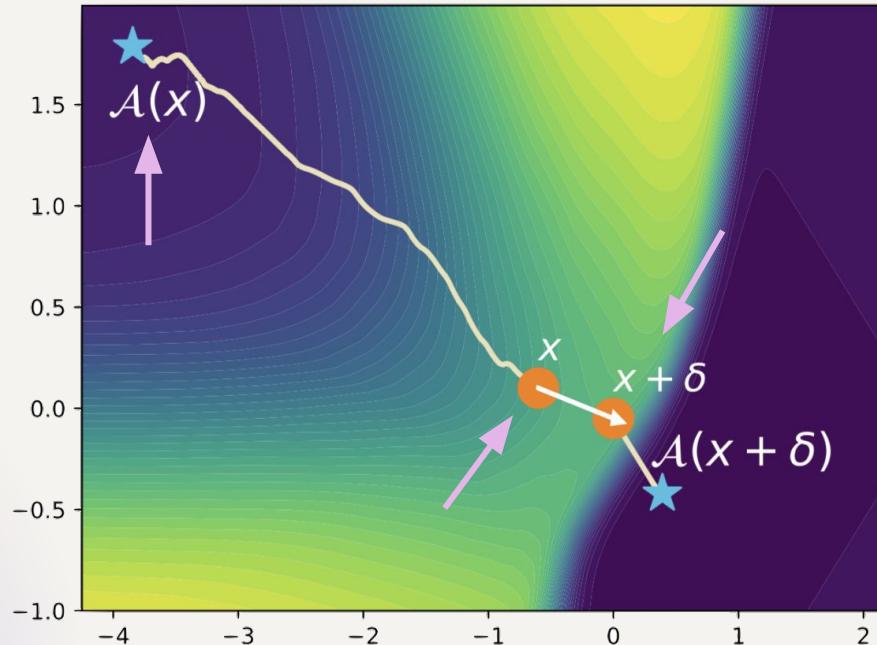
Maximize: c is in desired class

Minimize: Difficulty of c

CFE's Can Be Attacked

Why Does This Attack Work?

Key Idea : CFE search converges to different local minimums



Counterfactual Explanations Can Be Manipulated

Dylan Slack, Sophie Hilgard, Hima Lakkaraju, and Sameer Singh
NeurIPS 2021

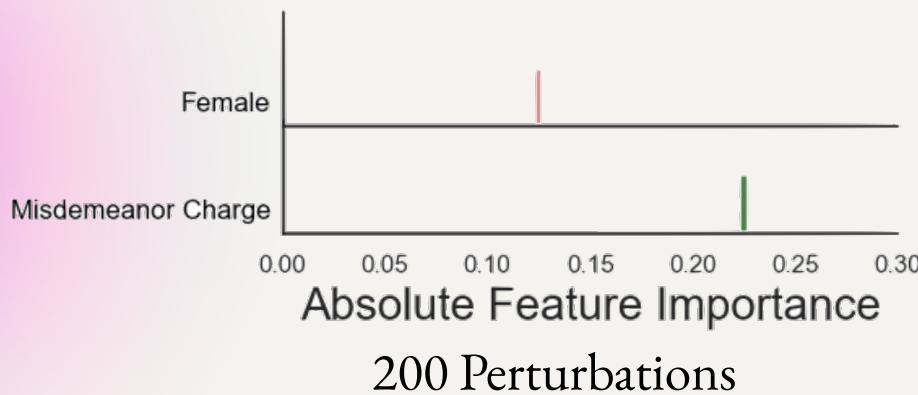
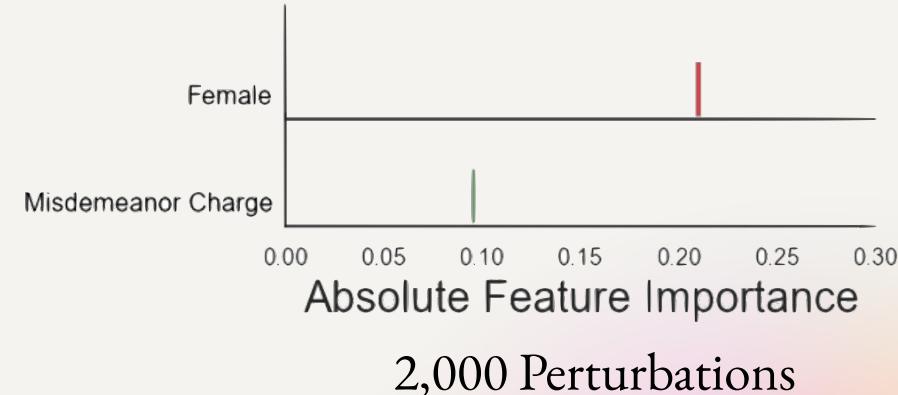
Building More Reliable Explanations

Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Dylan Slack*, Sophie Hilgard, Sameer Singh, and Hima Lakkaraju
NeurIPS 2021

Highlighting Issues With LIME

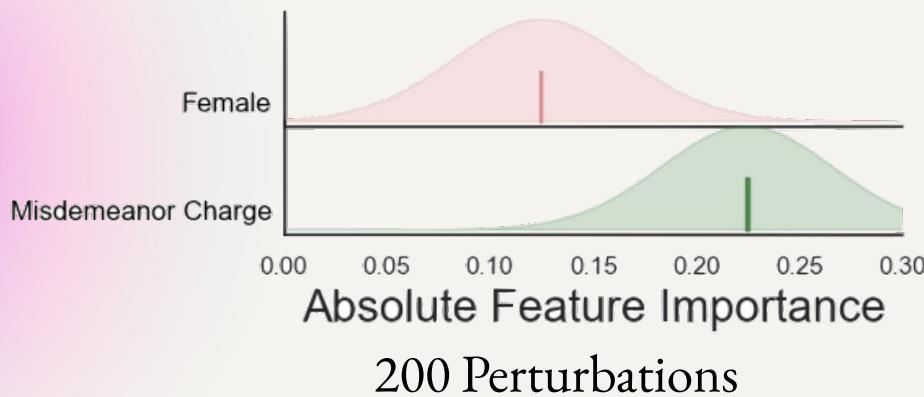
Two explanations on the same instance,
different hyperparameters

Red: Negative Contribution
Green: Positive Contribution

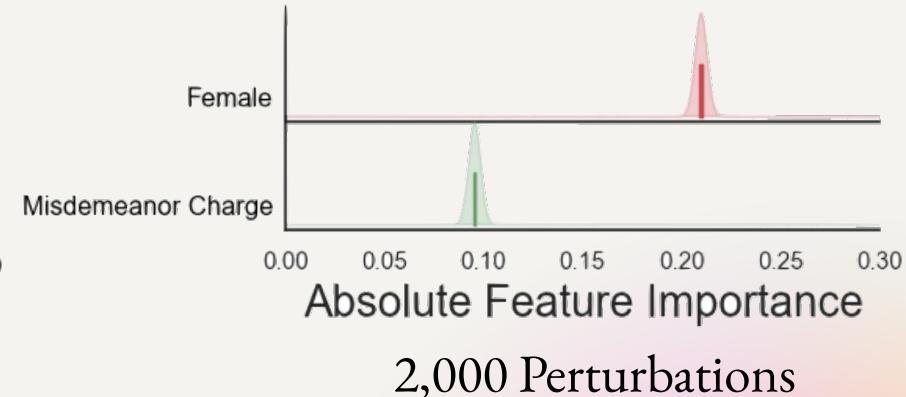


Uncertainty is the Solution!

Define feature importances as distributions.

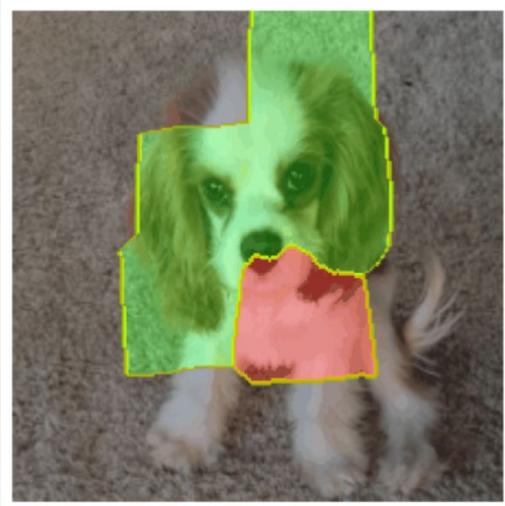


Red: Negative Contribution
Green: Positive Contribution

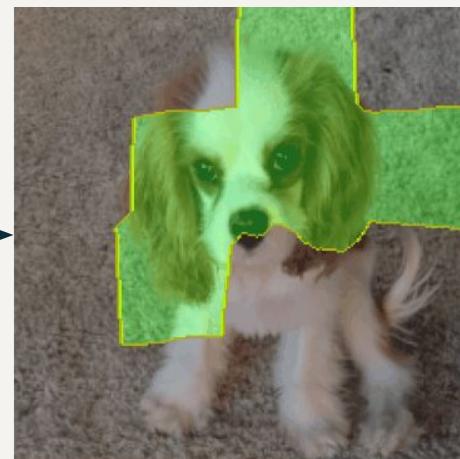


Visualizing Uncertainty In Explanations

LIME



BayesLIME

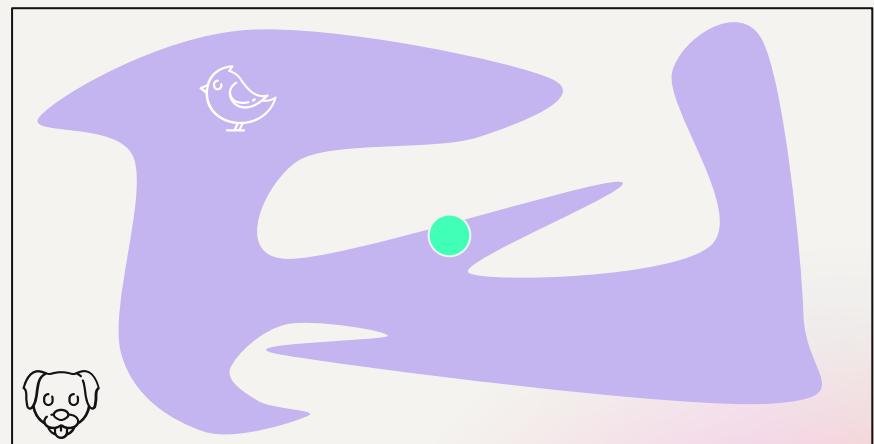


Formulation

$$y|z, \phi, \epsilon \sim \phi^T z$$

ϕ : Feature Importance

z : Perturbations

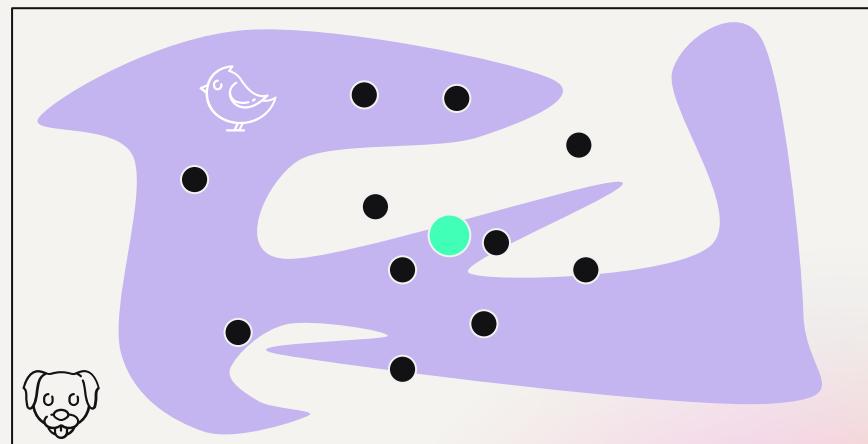


Formulation

$$y|z, \phi, \epsilon \sim \phi^T z$$

ϕ : Feature Importance

z : Perturbations



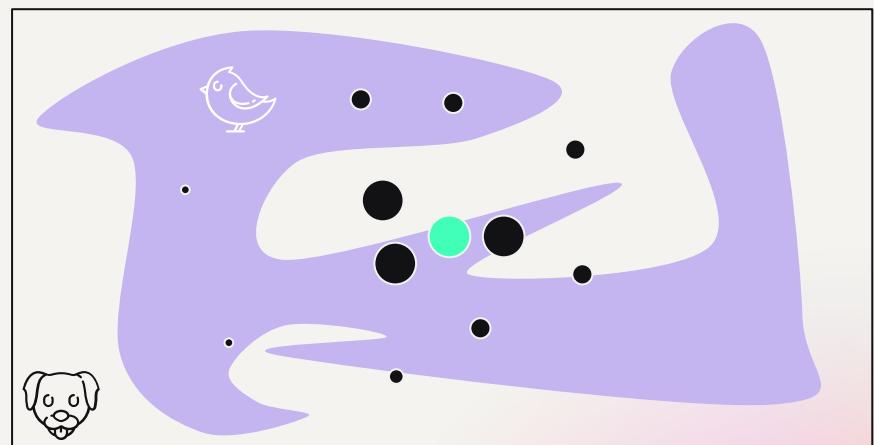
Formulation

$$y|z, \phi, \epsilon \sim \phi^T z + \epsilon \quad \epsilon \sim \mathcal{N}(0, \frac{\sigma^2}{\pi_x(z)})$$

ϕ : Feature Importance

z : Perturbations

$\pi_x(z)$: Weighting Function



Formulation

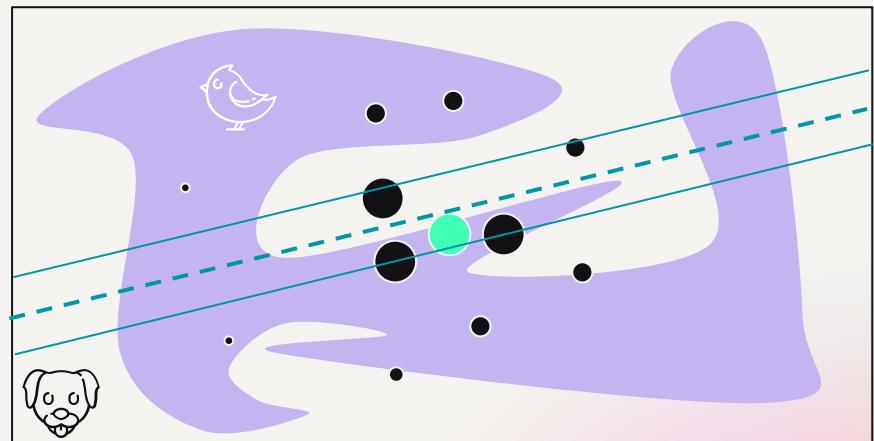
$$y|z, \phi, \epsilon \sim \phi^T z + \epsilon \quad \epsilon \sim \mathcal{N}(0, \frac{\sigma^2}{\pi_x(z)})$$

$$\phi|\sigma^2 \sim \mathcal{N}(0, \sigma^2 \mathbb{I}) \quad \sigma^2 \sim \text{Inv-}\chi^2(n_0, \sigma_0^2).$$

ϕ : Feature Importance

z : Perturbations

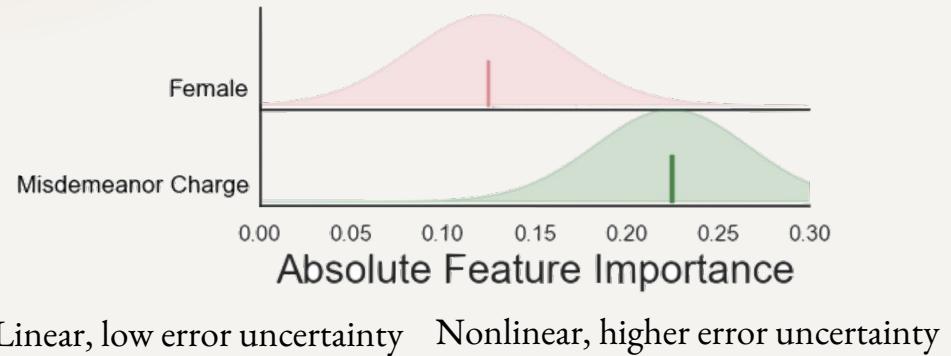
$\pi_x(z)$: Weighting Function



Notions of Uncertainty

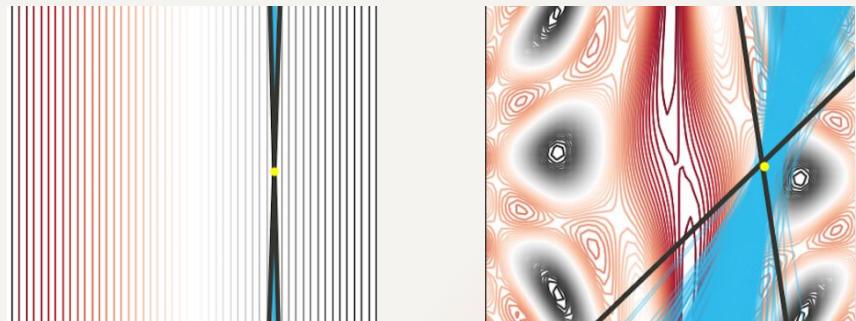
Feature Importance Uncertainty

Goes to zero with sufficient perturbations



Error Uncertainty

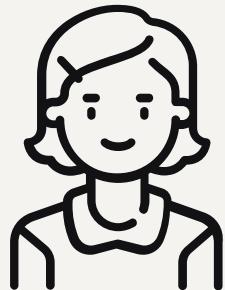
Converges to the error of the explanation



Uncertainty is Calibrated

Data set	Calibration <i>Closer to 95.0 is better</i>	
	<i>BayesLIME</i>	<i>BayesSHAP</i>
ImageNet	94.8	89.9
MNIST	97.2	90.1
COMPAS	95.5	87.9
German Credit	96.9	89.6

Estimating Required Number of Perturbations (PTG)



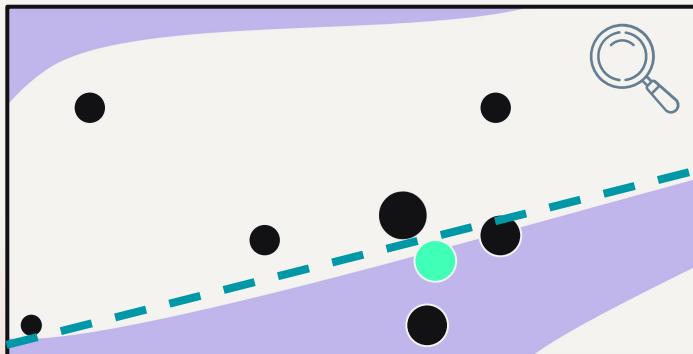
“Get me an explanation with **95% credible interval width** of 0.01 for this image!”

Perturbations-to-go
(PTG)

You need to use **7,634 perturbations!**

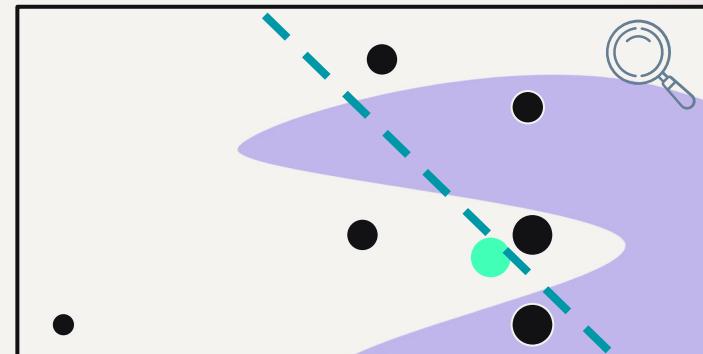
Estimating Required Number of Perturbations (PTG)

Linear Local Decision Surface



You probably don't need to sample too much more!

Non-linear Local Decision Surface



Eh, you need to sample more!

Estimating Required Number of Perturbations (PTG)

How many
perturbations =
you need

$$G(W, \alpha, x) =$$

Estimating Required Number of Perturbations (PTG)

How many perturbations you need = $\frac{\text{Local Error}}{\text{Number of Sampled Perturbations}}$

$$G(W, \alpha, x) = \frac{4s_S^2}{S} - S$$

Estimating Required Number of Perturbations (PTG)

$$\frac{\text{How many perturbations you need}}{\text{Perturbation Proximity}} = \frac{\text{Local Error}}{\text{Desired Uncertainty}} \times \frac{\text{Number of Sampled Perturbations}}{S}$$

$$G(W, \alpha, x) = \frac{4s_S^2}{\bar{\pi}_S \times \left[\frac{W}{\Phi^{-1}(\alpha)} \right]^2} - S$$

Focused Sampling of Perturbations

Perturbations

Posterior Predictive Distribution

$$\hat{y}(z)|\mathcal{Z}, Y \sim t_{(\mathcal{V}=N)}(\hat{\phi}^T z, (z^T V_\phi z + 1)s^2)$$

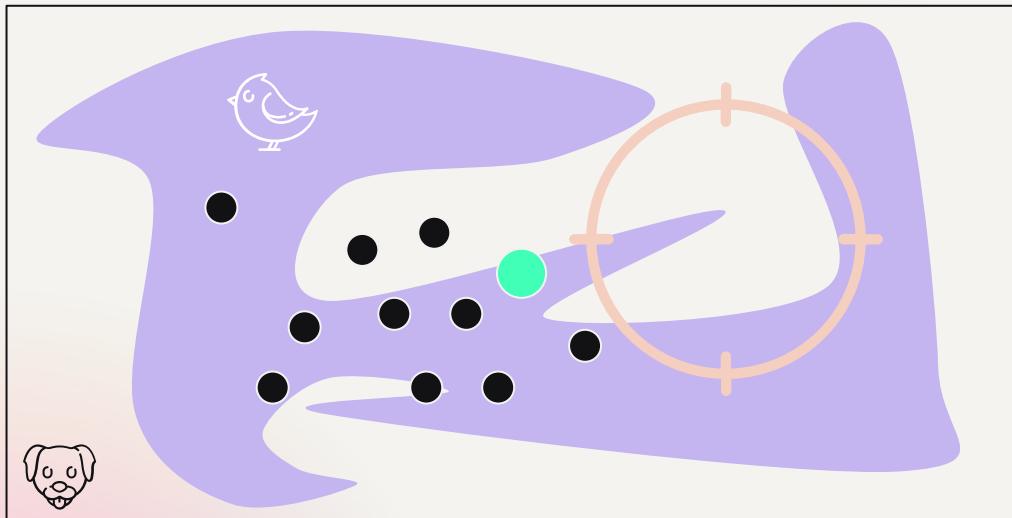
Low
uncertainty

Low
uncertainty

Low
uncertainty

High
uncertainty

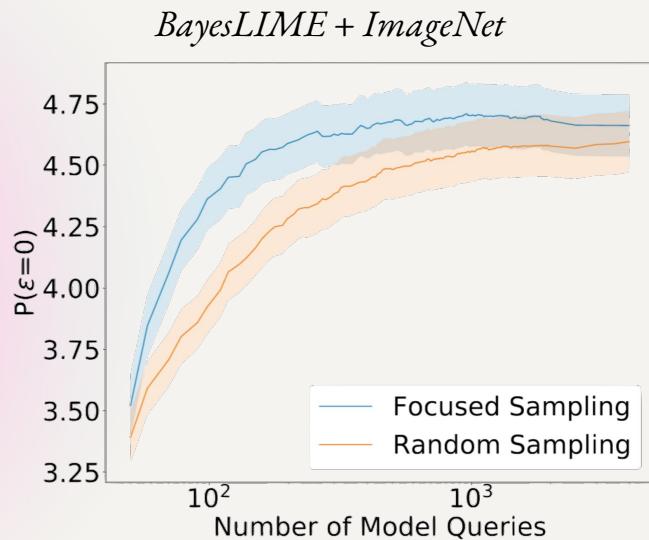
Focused Sampling of Perturbations



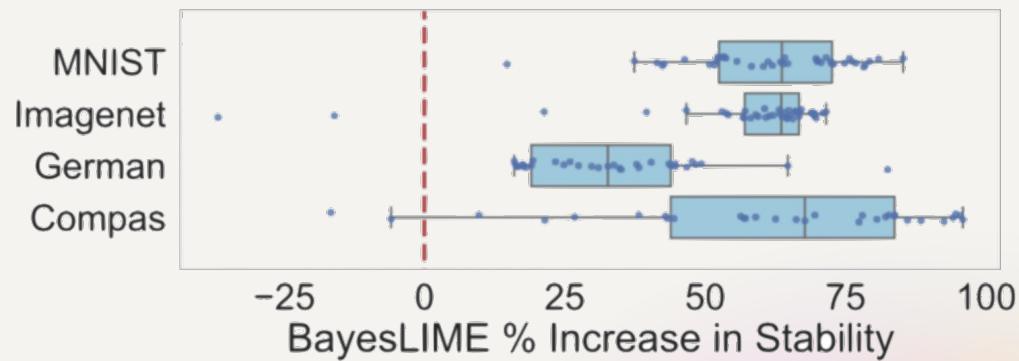
I should probably sample more over here...

Benefits of Focused Sampling

Converges more quickly



Improves Stability



Conclusion

- We need methods to figure out whether to trust ML models
- Post hoc explanations can help us figure this out
 - Revealing “why” models make decisions
 - Very flexible
- However, there are shortcomings to post hoc explanations
- Modeling uncertainty helps us overcome some challenges

Bibliography

Reliable Post hoc Explanations: Modeling Uncertainty in Explainability

Dylan Slack*, Sophie Hilgard, Sameer Singh, and Hima Lakkaraju

NeurIPS 2021

Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods

Dylan Slack*, Sophie Hilgard*, Emily Jia, Sameer Singh, and Hima Lakkaraju

AIES 2020

Counterfactual Explanations Can Be Manipulated

Dylan Slack, Sophie Hilgard, Hima Lakkaraju, and Sameer Singh

NeurIPS 2021

A face-scanning algorithm increasingly decides whether you deserve the job

Drew Harwell

Washington Post 2019

Accessed January 2022

Slides Template Downloaded from Slidesgo