

Responsible AI: Towards a Hybrid Method for Evaluating Data-Driven Decision-making

Cor Steging

XAI Seminar (Imperial College London)

Just a bit about me...

- › Bsc & Msc Artificial Intelligence
@ University of Groningen
- › Machine Learning Engineer
@ Slimmer AI
- › PhD candidate
@ Hybrid Intelligence & RuG



Explainability and Responsibility

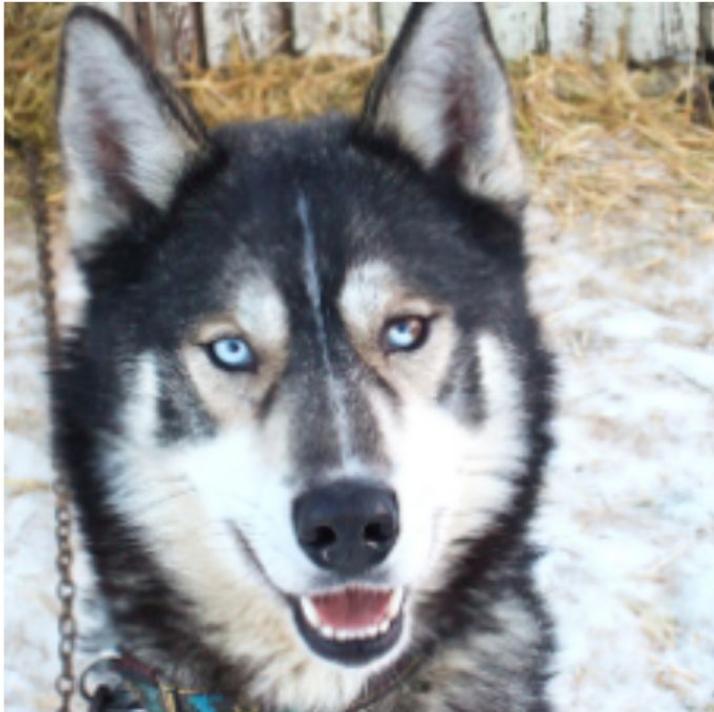
- › Explainability:
 - . Can the AI **explain** its behavior?
- › Responsibility:
 - . Does the AI **behave** responsibly?

The questions of responsibility

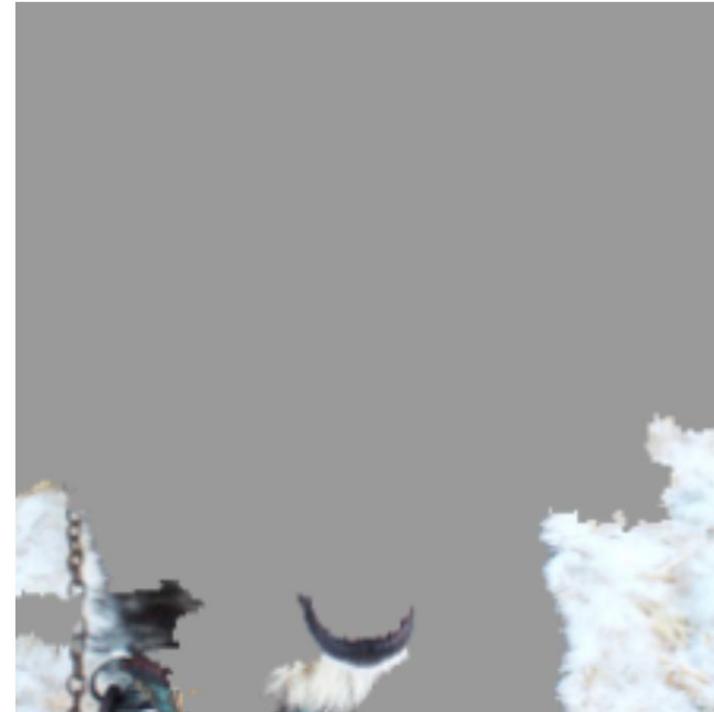
1. How should the AI behave?
 - . Ethical question

2. How do we make the AI behave according to 1?
 - . Engineering question

Explainable AI



(a) Husky classified as wolf



(b) Explanation

(Ir-)Responsible AI

(a) Wolf classified as wolf

(b) Explanation

Responsible AI

$+ .007 \times$

=

“panda”

57.7% confidence

noise

Responsible AI

- › Dutch Childcare Benefit Scandal (Toeslagenaffaire)
- › 26K wrongly accused parents
- › AI risk assessment system
 - . Wrong predictions
 - . Wrong reasons

<https://nos.nl/artikel/2428355-nog-meer-kinderen-toeslagenaffaire-uit-huis-geplaatst>

Responsible AI: knowledge versus data

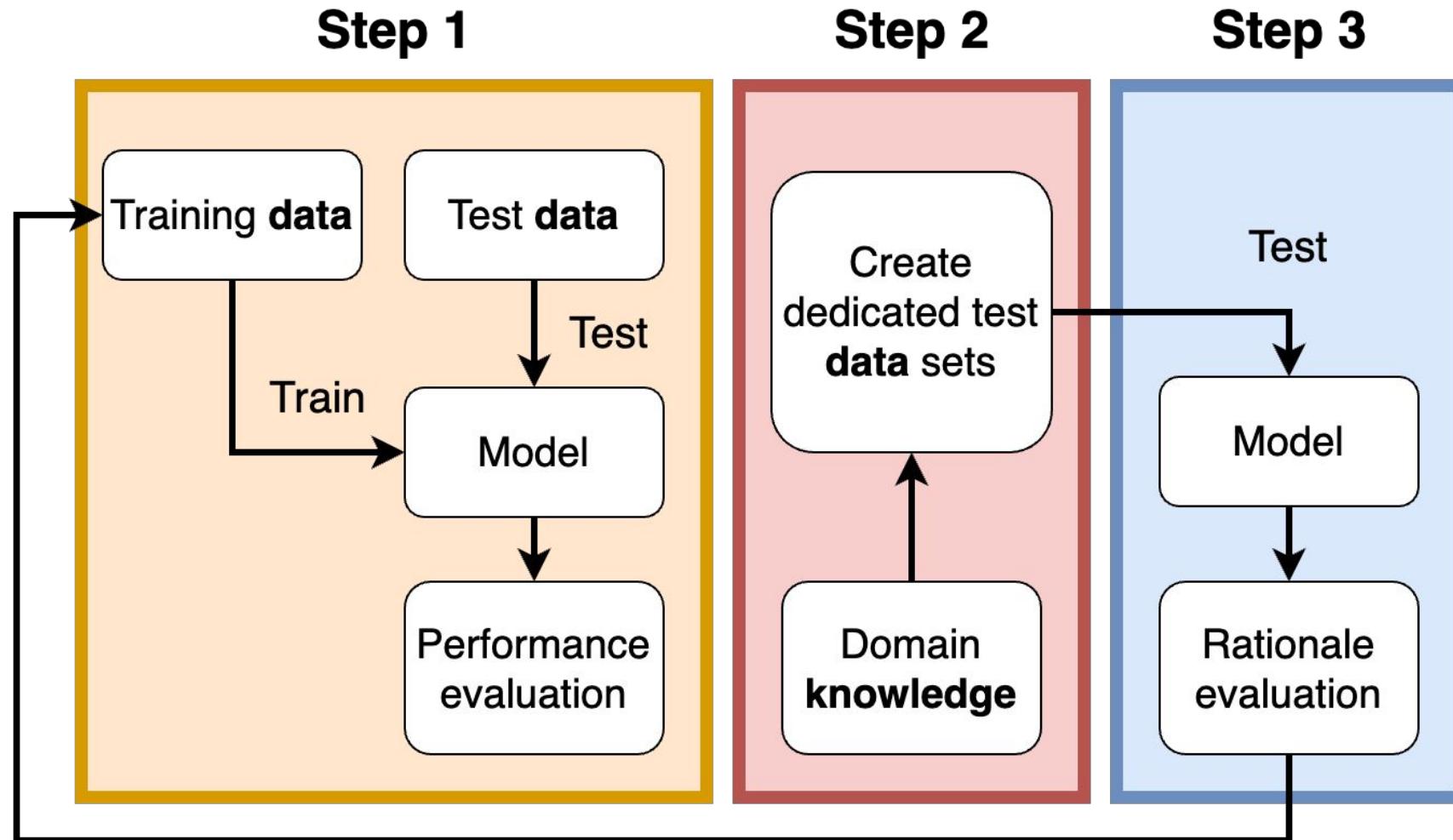
- › Rule-based AI is transparent and uses sound reasoning
 - . Based on expert knowledge
- › Do away with data-drive (connectionist) AI?
 - . By no means!

Good AI

- › AI systems should make the right decisions;
- › Make these decisions for the right reasons;
- › And explain why they made these decisions.
- › Hybrid: Use knowledge to enhance data-driven AI

Current work

- › Hybrid method for evaluating the decision-making (rationale) of data-driven AI systems
- › We test the behavior of the AI and see if it matches expectations
- › Create specialized test cases



Welfare Benefit Domain

Eligible for benefit if and only if:

1. **Pensionable age** (60 for women, 65 for men);
2. At least 4 out of 5 **contributions** were paid;
3. **Spouse** of the patient;
4. Not **absent** from the UK;
5. **Resources** are less than 3000 pounds;
6. Live within **50 miles** of the hospital if the patient is an '**in**' patient or further than **50 miles** if the patient is an '**out**' patient

Welfare benefit domain

$$Eligible(x) \iff C_1(x) \wedge C_2(x) \wedge C_3(x) \wedge C_4(x) \wedge C_5(x) \wedge C_6(x)$$
$$C_1(x) \iff (Gender(x) = \text{female} \wedge Age(x) \geq 60) \vee (Gender(x) = \text{male} \wedge Age(x) \geq 65)$$
$$C_2(x) \iff |\text{Con}_1(x), \text{Con}_2(x), \text{Con}_3(x), \text{Con}_4(x), \text{Con}_5(x)| \geq 4$$
$$C_3(x) \iff Spouse(x)$$
$$C_4(x) \iff \neg \text{Absent}(x)$$
$$C_5(x) \iff \neg \text{Resources}(x) \geq 3000$$
$$C_6(x) \iff (Type(x) = \text{in} \wedge Distance(x) < 50) \vee (Type(x) = \text{out} \wedge Distance(x) \geq 50)$$

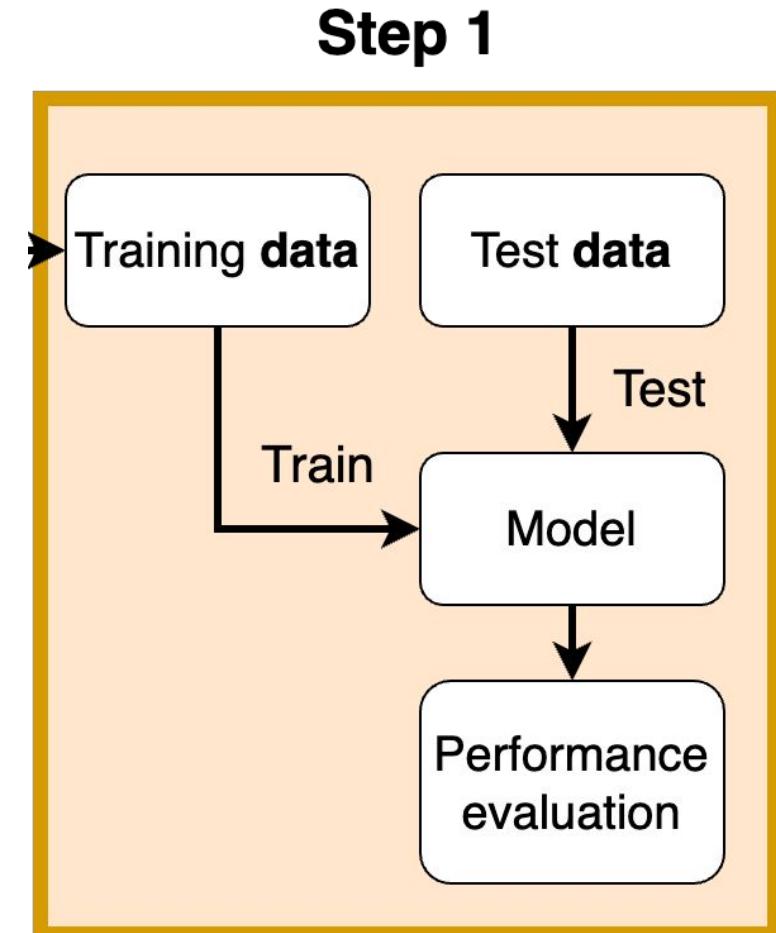
Welfare Benefit Datasets

- › Create data:
 - 50% eligibility
 - Ineligible instances due to **multiple** condition
 - A training dataset and a test dataset

Age	Gender	Con1	Con2	Con3	Con4	Con5	Spouse	Absent	Resources	Patient type	Distance	Eligible
84	Female	0	1	1	1	1	1	0	1569	Out	74	True

Step 1:

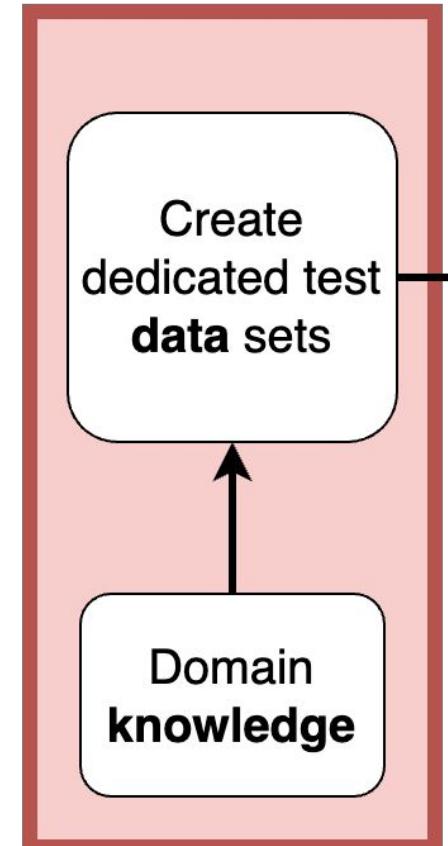
- › Train a neural network on training data
- › Test the network using test data
- › Accuracy of 99.79%



Step 2:

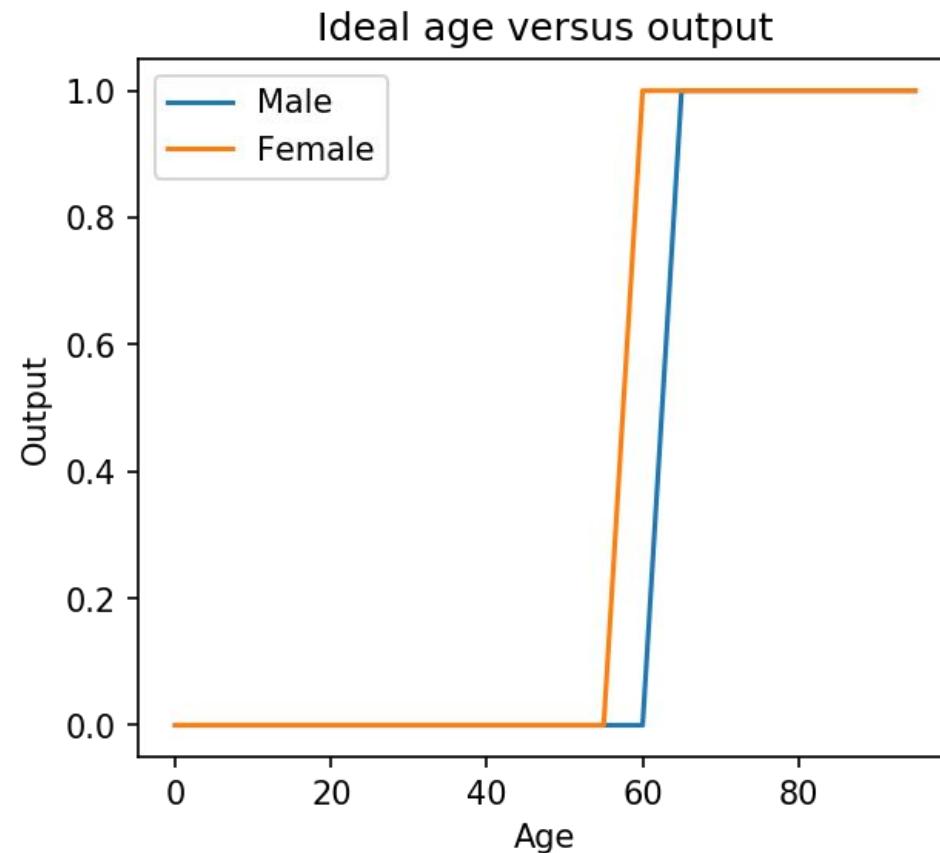
Step 2

- › Domain is defined by 6 conditions
 - . Neural network should have learned those
- › Focus on condition 1:
Pensionable age (60 for women, 65 for men)
- › Create a dedicated test dataset where all conditions are satisfied except Condition 1
 - . Value of condition 1 are varied randomly
 - . Eligibility is therefore determined solely by C1
 - . Neural network can only perform well if it learned C1



Step 3:

- › Accuracy on dedicated test set is 63.24%



Step 2

Create
dedicated test
data sets

Domain
knowledge

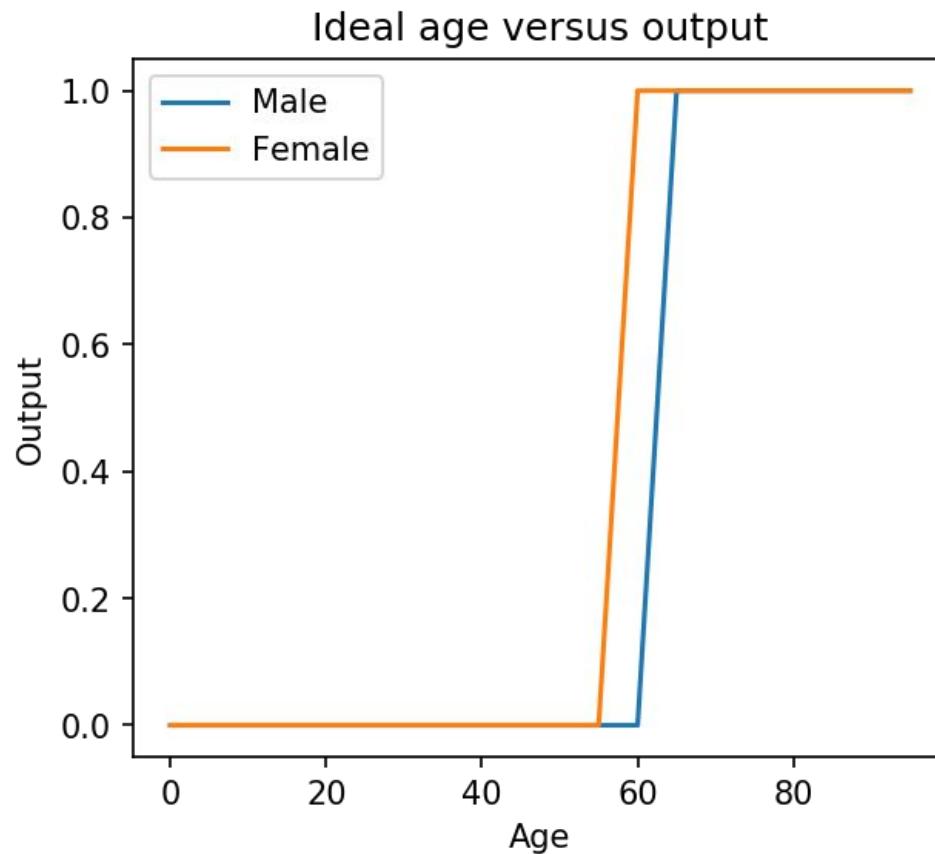
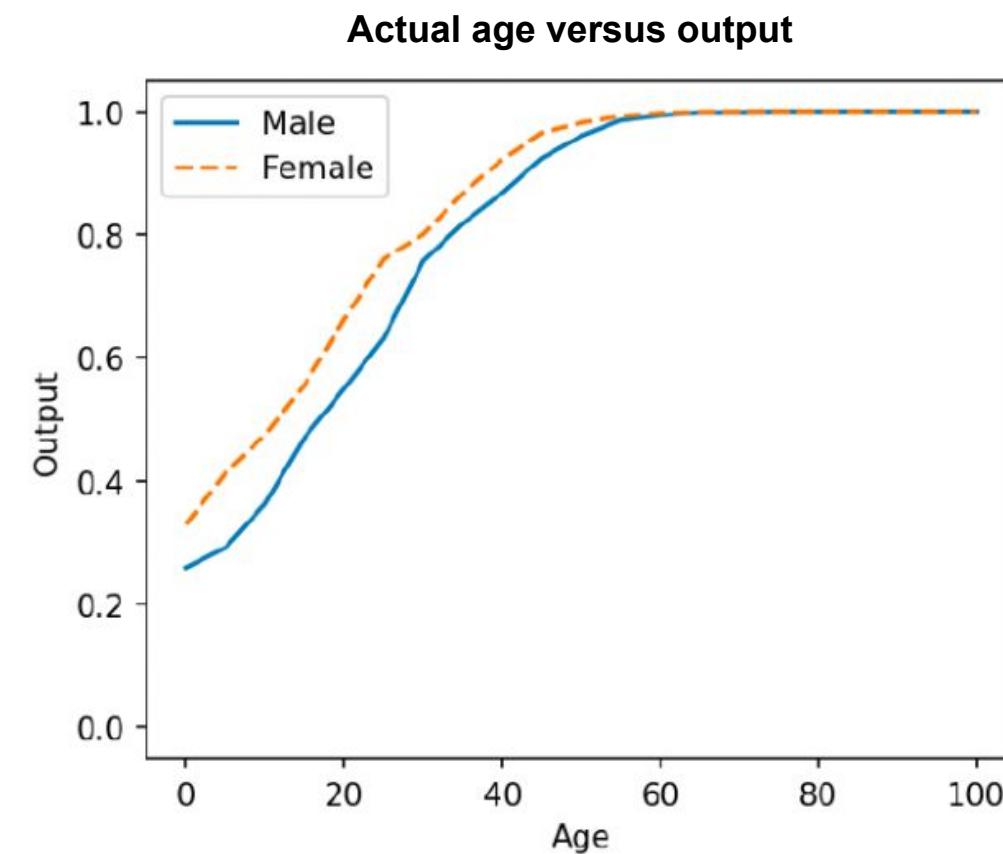
Step 3

Test

Model

Rationale
evaluation

Step 3:



Welfare benefit domain

$$\text{Eligible}(x) \iff C_1(x) \wedge C_2(x) \wedge C_3(x) \wedge C_4(x) \wedge C_5(x) \wedge C_6(x)$$
$$C_1(x) \iff (\text{Gender}(x) = \text{female} \wedge \text{Age}(x) \geq 60) \vee (\text{Gender}(x) = \text{male} \wedge \text{Age}(x) \geq 65)$$
$$C_2(x) \iff |\text{Con}_1(x), \text{Con}_2(x), \text{Con}_3(x), \text{Con}_4(x), \text{Con}_5(x)| \geq 4$$
$$C_3(x) \iff \text{Spouse}(x)$$
$$C_4(x) \iff \neg \text{Absent}(x)$$
$$C_5(x) \iff \neg \text{Resources}(x) \geq 3000$$
$$C_6(x) \iff (\text{Type}(x) = \text{in} \wedge \text{Distance}(x) < 50) \vee (\text{Type}(x) = \text{out} \wedge \text{Distance}(x) \geq 50)$$

Simplified Welfare Benefit domain

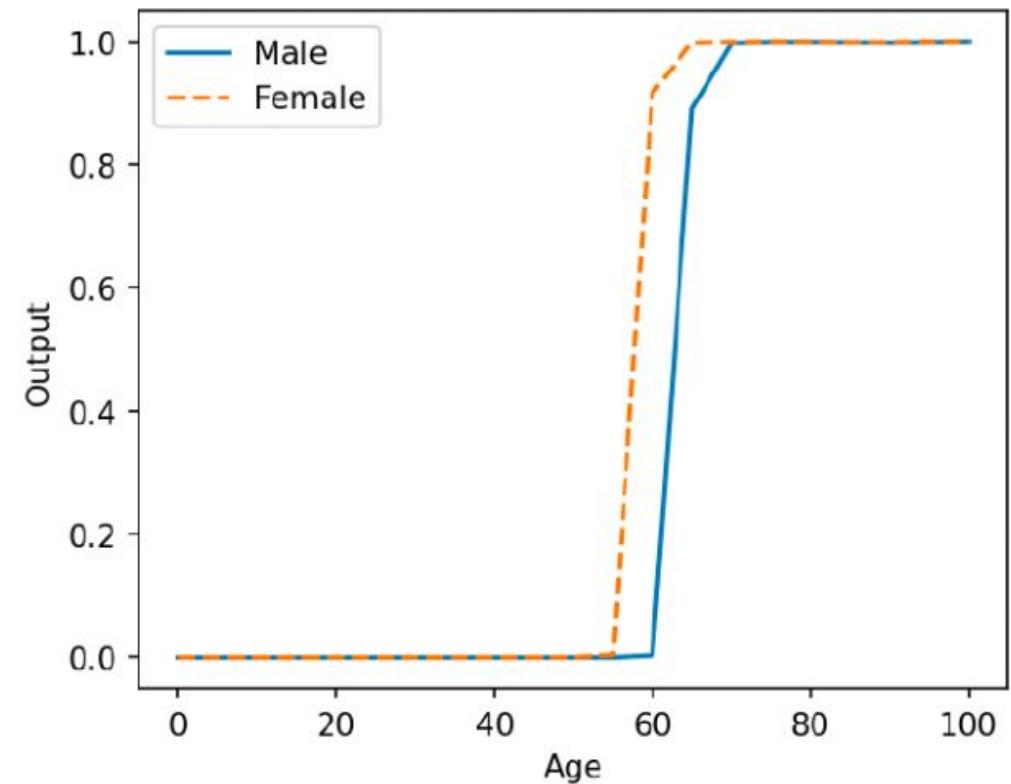
$$\text{Eligible}(x) \iff C_1(x) \wedge C_6(x)$$

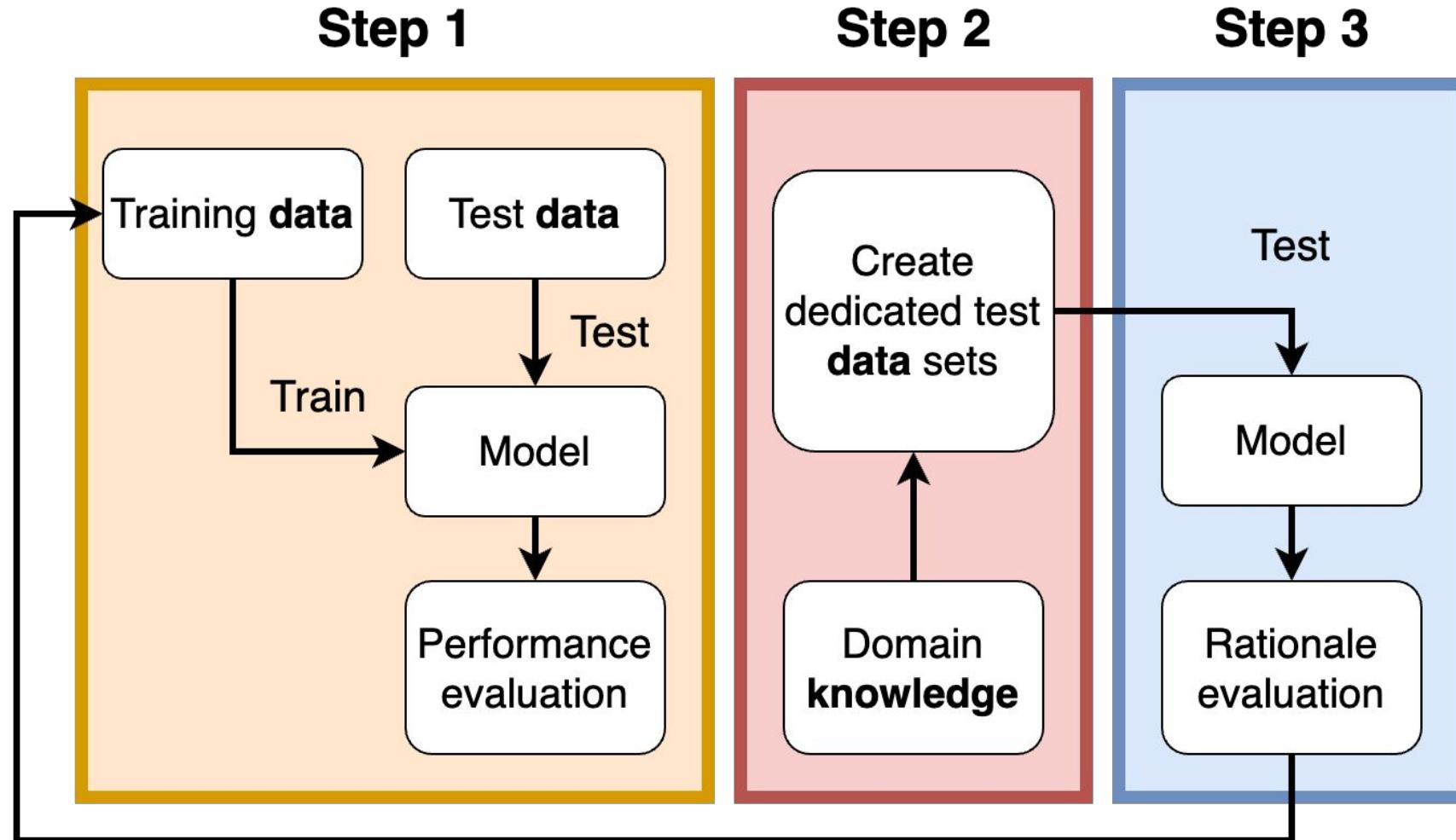
$$\begin{aligned} C_1(x) \iff & (\text{Gender}(x) = \text{female} \wedge \text{Age}(x) \geq 60) \vee \\ & (\text{Gender}(x) = \text{male} \wedge \text{Age}(x) \geq 65) \end{aligned}$$

$$\begin{aligned} C_6(x) \iff & (\text{Type}(x) = \text{in} \wedge \text{Distance}(x) < 50) \vee \\ & (\text{Type}(x) = \text{out} \wedge \text{Distance}(x) \geq 50) \end{aligned}$$

Simplified Welfare Benefit Domain

- › Accuracy on regular test set:
 - . 99.48%
- › Accuracy on dedicated test set:
 - . 99.70%





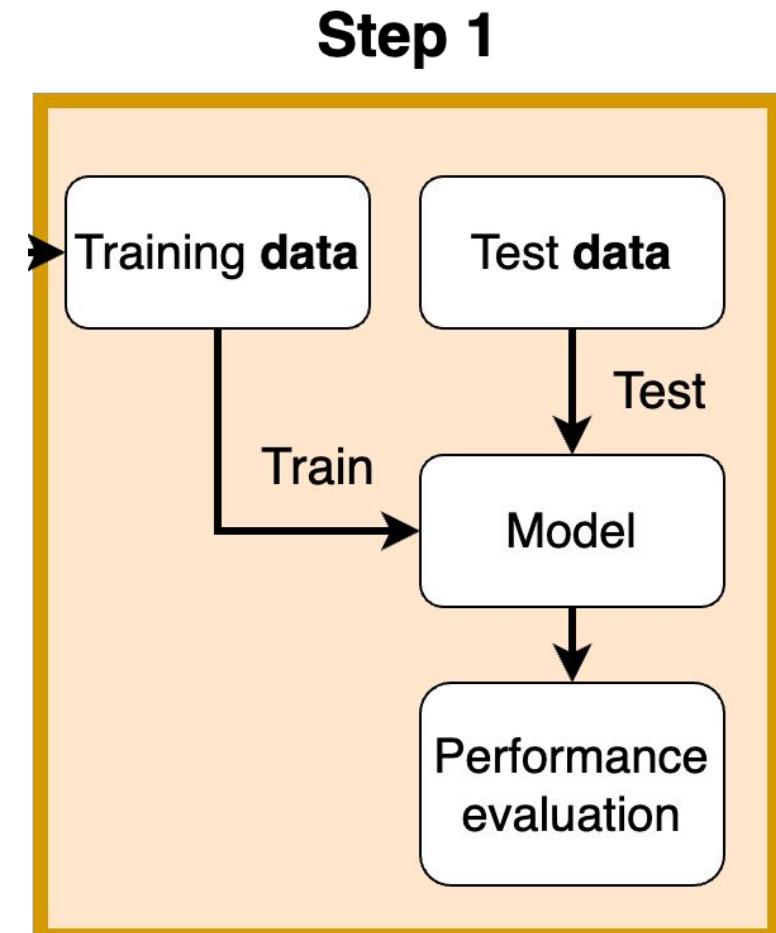
Welfare Benefit Datasets

- › Create data:
 - . 50% eligibility
 - . Ineligible instances due to **a single** condition
 - . A training dataset and a test dataset
- › Tailored training data

Age	Gender	Con1	Con2	Con3	Con4	Con5	Spouse	Absent	Resources	Patient type	Distance	Eligible
84	Female	0	1	1	1	1	1	0	1569	Out	74	True

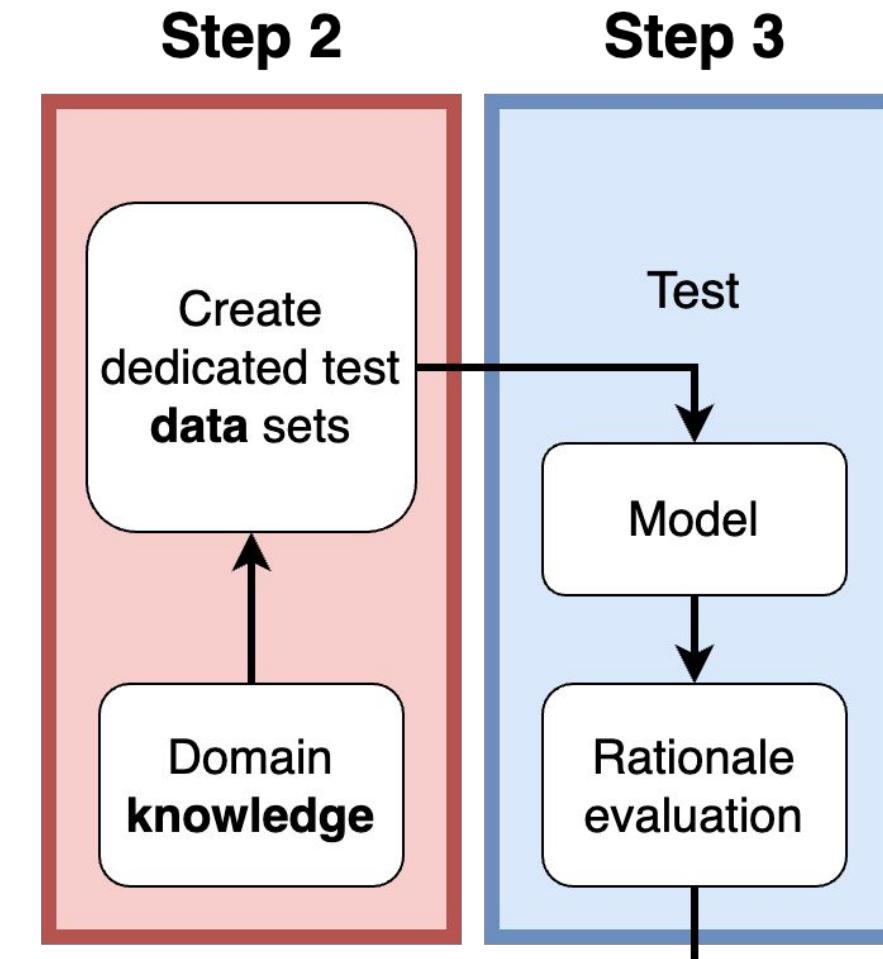
Step 1: (tailored)

- › Train a neural network on training data
- › Test the network using test data
- › Accuracy of 98.03%
 - . Previous: 99.79%



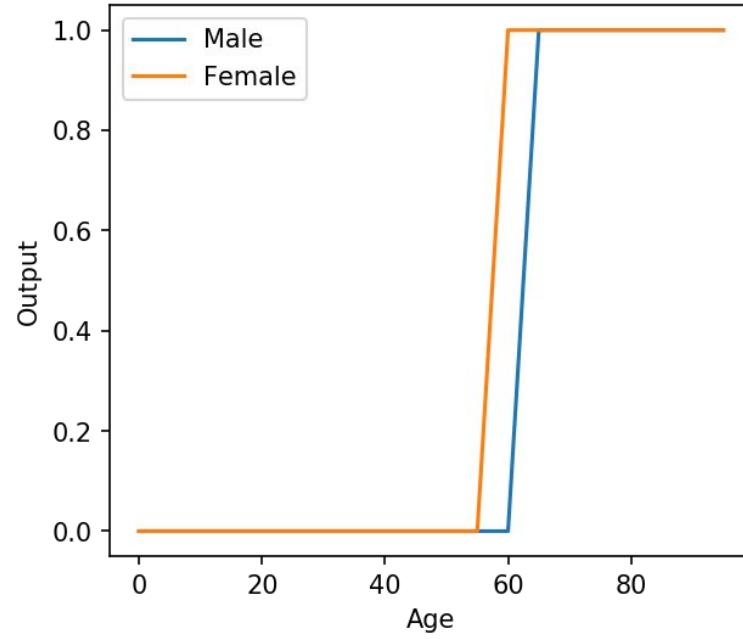
Step 3: (tailored)

- › Accuracy on dedicated test set is 97.66%
 - . Previous: 63.24%

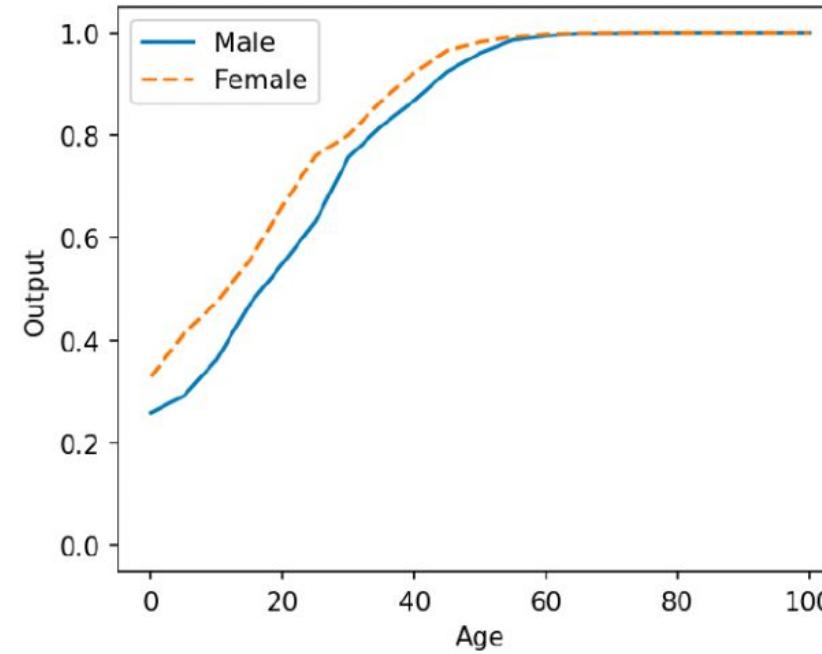


Step 3: Tailored

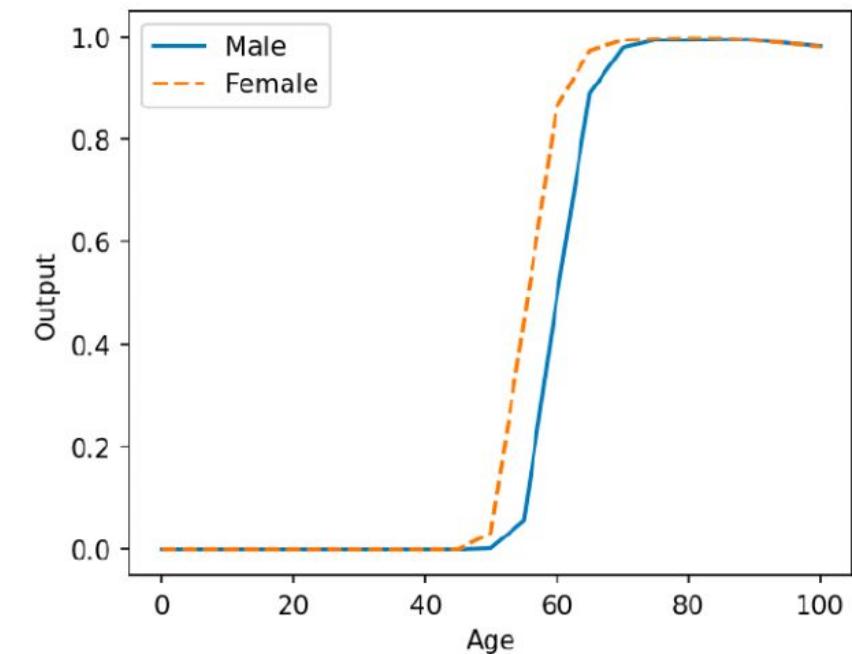
Ideal age versus output



Actual age versus output



Actual age versus output (tailored)



Method for Rationale Evaluation

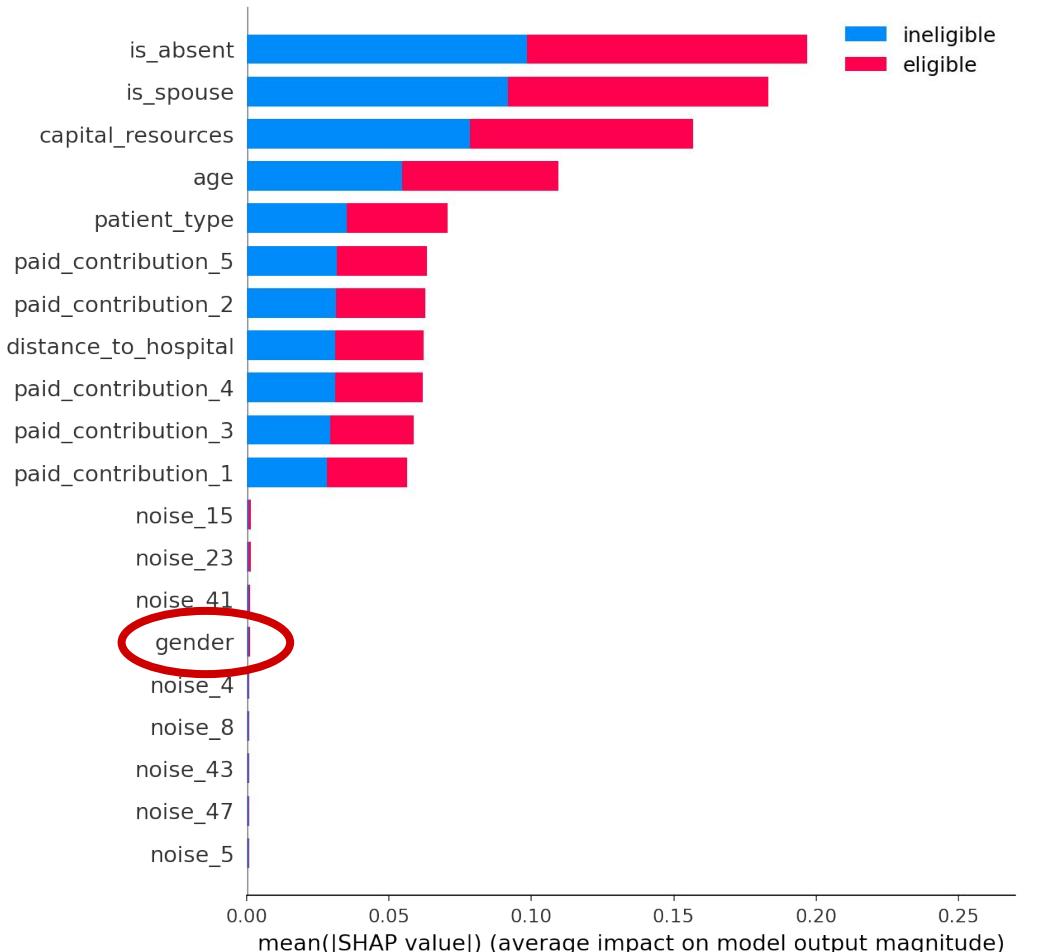
- › Evaluate the decision making of machine learning systems
 - . Potentially improve
- › Model agnostic
- › Hybrid: both data and knowledge
 - . + human and machine

Explainable AI

- › Can XAI be used to expose unsound decision-making?
- › Apply SHAP and LIME to our networks:
 - . **Original** training data:
 - **Unsound** decision-making
 - . **Tailored** training data:
 - **Sound** decision-making

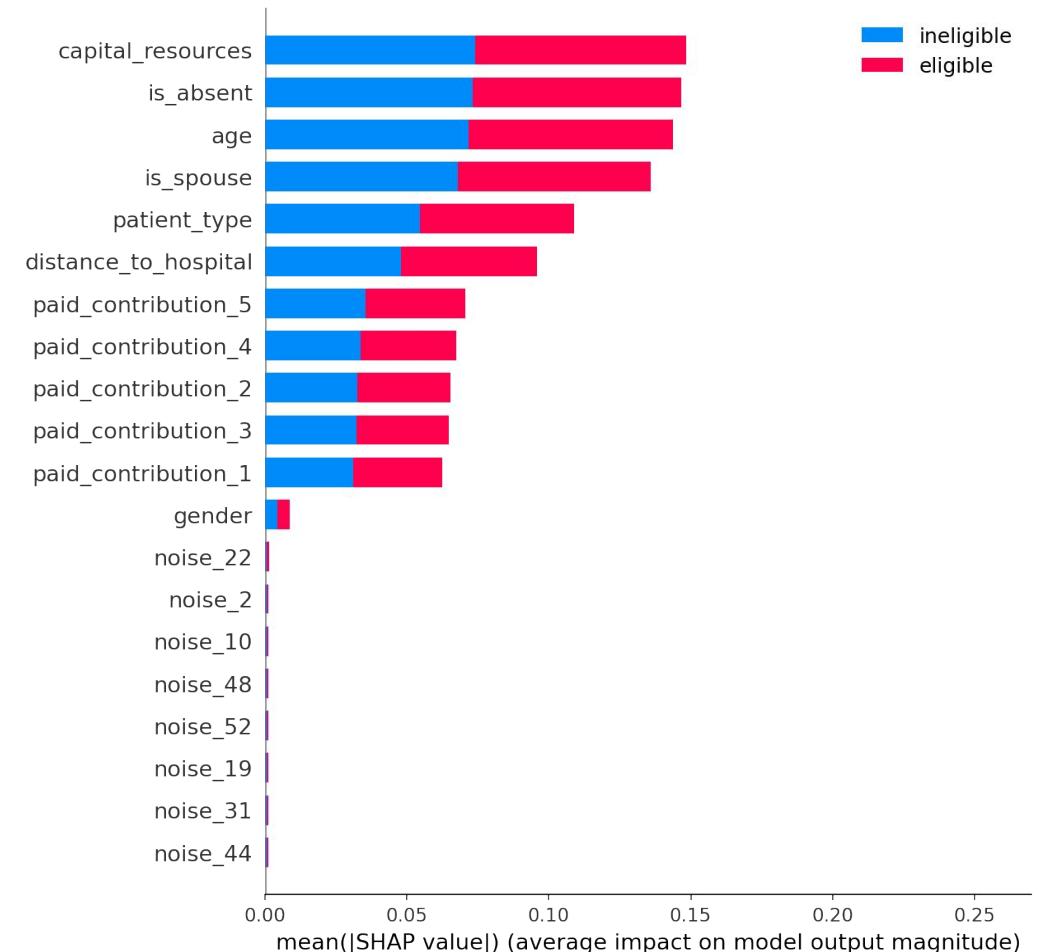
Explainable AI: original training data

- › 12 features are relevant
- › 11 have high impact values
- › Gender can be accounted for
- › Conclusion:
 - High accuracy
 - Correct features



Explainable AI: tailored training data

- › **12** features are relevant
- › **12** have high impact values



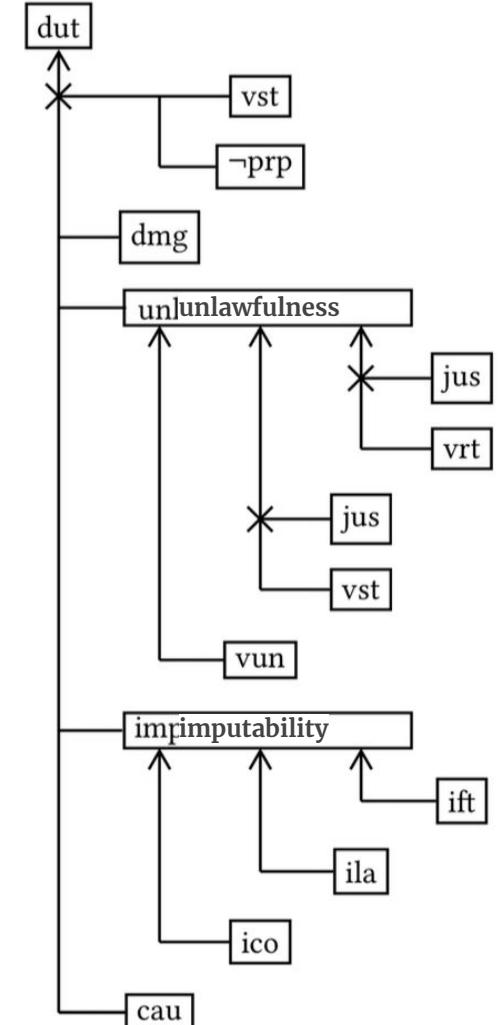
Explainable AI

- › Can XAI be used to expose unsound decision-making?
 - . Yes, but it cannot guarantee sound decision-making
- › XAI can incorrectly suggest a sound rationale

Tort law domain

- › Real life domain
 - . Statutory law
 - . Is there a duty to repair damages?

$$\begin{aligned}dut(x) &\iff c_1(x) \wedge c_2(x) \wedge c_3(x) \wedge c_4(x) \wedge c_5(x) \\c_1(x) &\iff cau(x) \\c_2(x) &\iff ico(x) \vee ila(x) \vee ift(x) \\c_3(x) &\iff vun(x) \vee (vst(x) \wedge \neg jus(x)) \vee (vrt(x) \wedge \neg jus(x)) \\c_4(x) &\iff dmg(x) \\c_5(x) &\iff \neg(vst(x) \wedge \neg prp(x))\end{aligned}$$

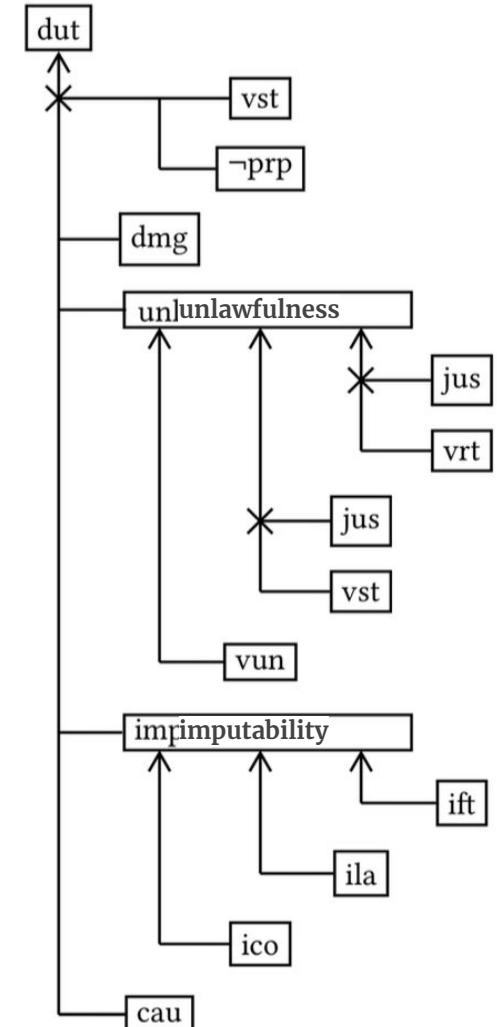


(A) Arguments and their attacks in the domain of Dutch tort law.

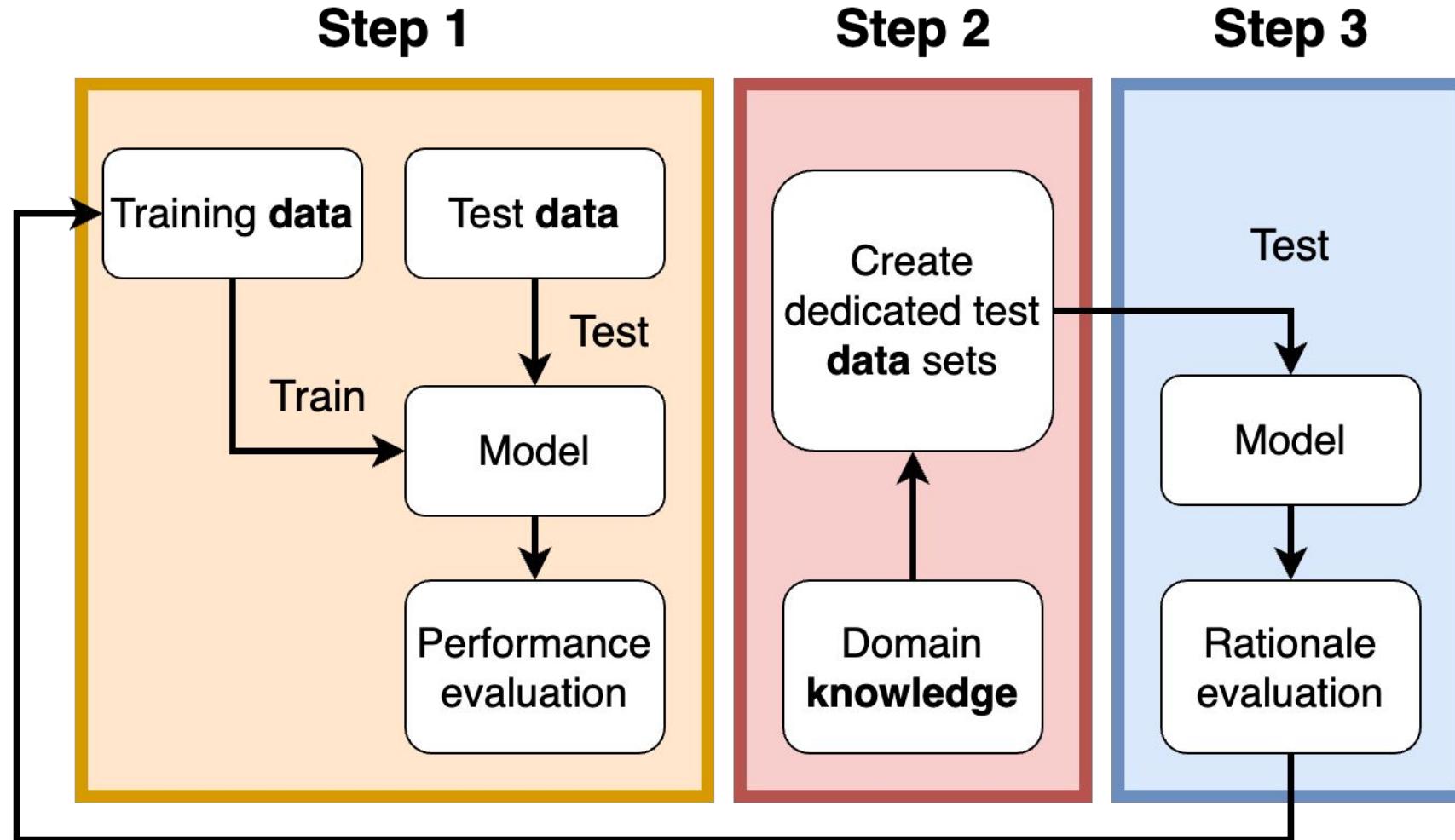
Tort law datasets

- › Create data:
 - 50% duty to repair damages
 - Create a small subset (500 instance)
 - A training dataset and a test dataset

vst	prp	dmg	jus	VRT	vun	ift	ila	ico	cau	dut
0	1	0	1	1	1	1	1	0	0	1



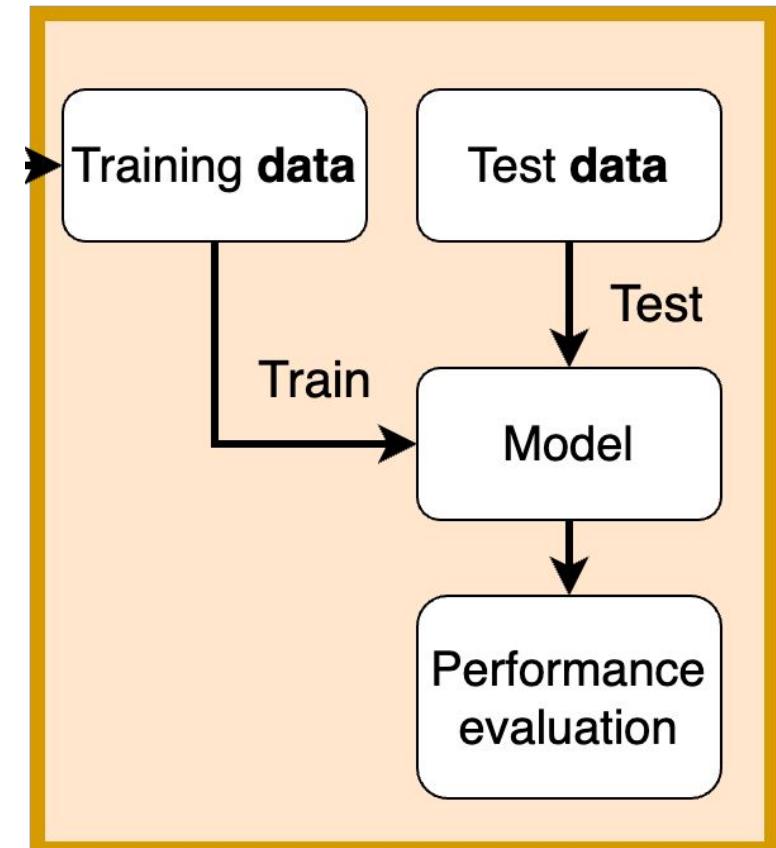
(A) Arguments and their attacks in the domain of Dutch tort law.



Step 1: Tort Law

- › Train a neural network on training data
- › Test the network using test data
- › Accuracy of 98.23%

Step 1



Step 2: Tort Law

Step 2

- › Domain is defined by 5 conditions
 - . Neural network should have learned those
- › Focus on condition C2 (imputability):

$$dut(x) \iff c_1(x) \wedge c_2(x) \wedge c_3(x) \wedge c_4(x) \wedge c_5(x)$$

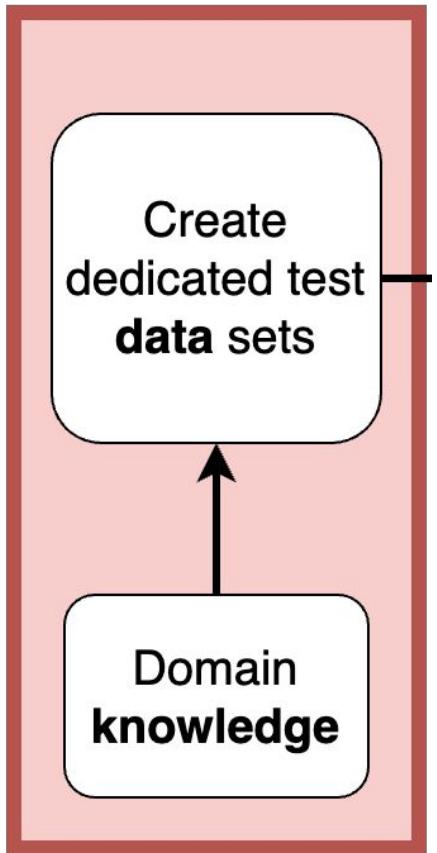
$$c_1(x) \iff cau(x)$$

$$c_2(x) \iff ico(x) \vee ila(x) \vee ift(x)$$

$$c_3(x) \iff vun(x) \vee (vst(x) \wedge \neg jus(x)) \vee (vrt(x) \wedge \neg jus(x))$$

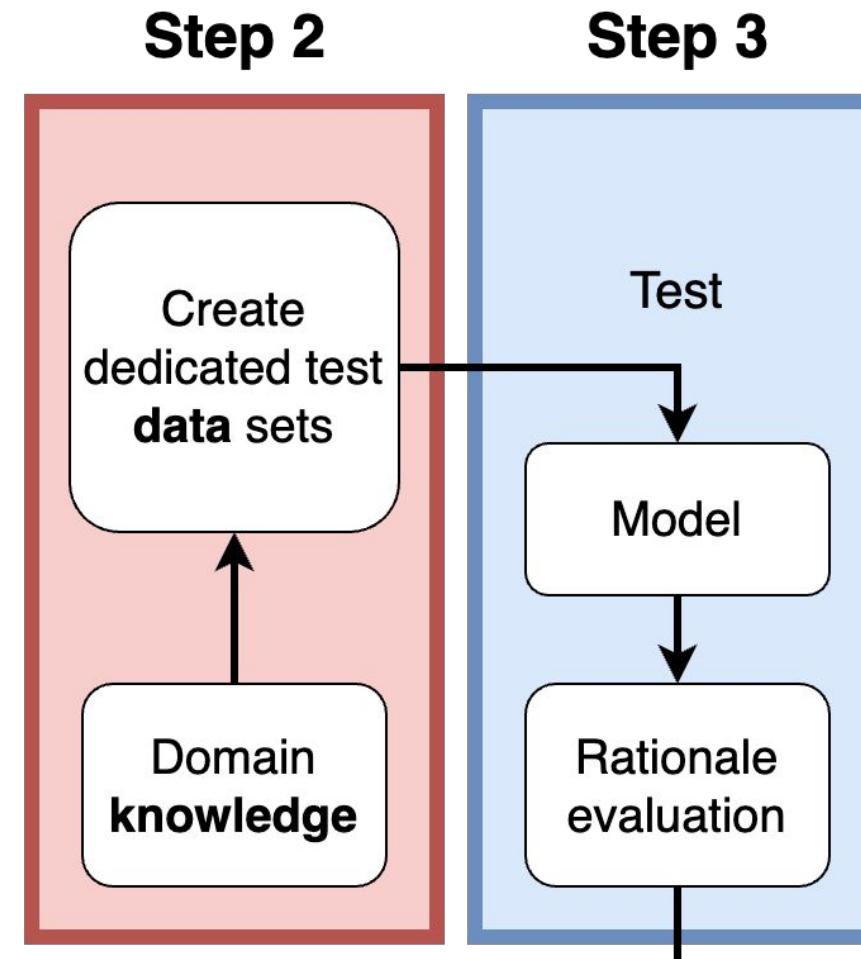
$$c_4(x) \iff dmg(x)$$

$$c_5(x) \iff \neg(vst(x) \wedge \neg prp(x))$$



Step 3: Tort Law

- › Accuracy on dedicated test set is 91.45%
 - . Label balance is 87.5% : 12.5%
 - . Matthews Correlation Coefficient: 0.2582



Future work

- › How do we apply the method to domains without inherent knowledge structure?
 - . Test what you do know.
- › Making the method work everywhere:
 - . Fictional domain, Artificial data (Welfare Benefit)
 - ↓
 - . Non-fictional domain, Artificial data (Tort Law)
 - ↓
 - . Non-fictional domain, Real data (Court Case predictions)

Conclusion

- › Knowledge-driven, model-agnostic method for evaluating decision-making
- › Evaluate and improve AI behavior
- › Systems can perform well for the wrong reasons
- › XAI cannot guarantee a sound rationale

Responsible AI: Towards a Hybrid Method for Evaluating Data-Driven Decision-making

Cor Steging

XAI Seminar (Imperial College London)