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Logic-based approaches to explanation

Di↵erent notions of explanation are studied in the XAI domain

Abductive
Contrastive
Counterfactual

Logic-based XAI mostly based on propositional logic (PL)
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Logic-based approaches to explanation

Fundamental building blocks of explanation:

Counterfactual dependence
Variance/invariance:

[I]nvariance is a modal notion – it has to do with whether

a relationship would remain stable under various

hypothetical changes [Woodward 2002, p. 225].

Imperfect knowledge of the classifier (“black box”)
) Epistemic/subjective explanation

Beyond PL: need for more expressive languages

Non-classical logics:

Modal logic (ML)
Conditional logic (CL)
Epistemic logic (EL), dynamic EL (DEL)
Deontic logic (DL)
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Outline

1 Explanations in “white box” classifiers

2 Explanations in “black box” classifiers

3 Open problems and future extensions
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Reasoning about “white box” classifiers

Main idea: a binary input classifier is a partition of all possible input
instances in an S5 Kripke model

Permanent	job	
(pe)	

>	3000	€	monthly	salary	
(sa)	

EU	ci:zenship	
(eu)	

Loan	

0	 0	 0	 No	

0	 0	 1	 No	

0	 1	 0	 No	

1	 0	 0	 Yes	

0	 1	 1	 Yes	

1	 0	 1	 Yes	

1	 1	 0	 Yes	

1	 1	 1	 Yes	

Figure: A classifier

States/instances	 f1	
s1={}	 No	
s2={eu}	 No	
s3={sa}	 No	
s4={pe}	 Yes	
s5={sa,eu}	 Yes	
s6={pe,eu}	 Yes	
s7={pe,sa}	 Yes	
s8={pe,sa,eu}	 Yes	

Figure: Its S5
representation
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Formal semantics

Atm
0

: countable set of atoms representing input features

Val : finite set of classification values (or classes)

Definition (Classifier model)

A classifier model (CM) is a tuple C = (S , f ) where

S ✓ 2Atm

0 is a set of input instances,

f : S �! Val is a classification function.
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Modal language

' ::= p | t(x) | ¬' | ' ^ ' | ⇤I'

with p ranging over Atm
0

and x ranging over Val

t(x) ⇡ “the actual input instance is classified as x”

⇤I' ⇡ “the classifier necessarily satisfies '”

⇡ “' is true for all input instances of the classifier”

Semantic interpretation wrt CM C = (S , f ) and s 2 S (pointed CM):

(C , s) |= p () p 2 s

(C , s) |= t(x) () f (s) = x

(C , s) |= ⇤I' () 8s 0 2 S : (C , s 0) |= '

8



Useful “ceteris paribus” modalities

Let X ✓ Atm
0

finite:

[X ]' =
def

^

Y ✓X

�
(
^

p2Y

^
^

p2X\Y

¬p) ! ⇤I((
^

p2Y

^
^

p2X\Y

¬p) ! ')
�

We have:

(C , s) |= [X ]' () 8s 0 2 S : if (s \ X ) = (s 0 \ X ) then (C , s 0) |= '

[X ]' ⇡ “' is true all atoms in X being equal”

⇡ “' is true regardless of the value of the atoms in Atm
0

\ X”
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Useful “ceteris paribus” modalities

Connection with prop. dependence logic [Yang & Väänänen, 2016]

Dependence atom (“q only depends on p
1

, . . . , p
k

”):

Dep(p
1

, . . . , p
k

, q) =
def

[;]
�
q ! [{p

1

, . . . , p
k

}]q
�
^

[;]
�
¬q ! [{p

1

, . . . , p
k

}]¬q
�
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Complexities

Finite (fixed) variables Infinite variables

Modalities [X ] are Polynomial NP-complete

defined as abbreviations

Modalities [X ] are Polynomial NEXPTIME-complete

primitives

Table: Summary of complexity results
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Explanations

Let � be a term (conjunction of literals):

Prime implicant:

PImp(�, x) =
def

[;]
⇣
� !

�
t(x) ^

^

p2Atm(�)

hAtm(�) \ {p}i¬t(x)
�⌘

Abductive explanation:

AXp(�, x) =
def

� ^ PImp(�, x)

Contrastive explanation:

CXp(�, x) =
def

� ^ hAtm
0

\ Atm(�)i¬t(x)^
^

p2Atm(�)

[(Atm
0

\ Atm(�)) [ {p}]t(x)
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Explanations

States/instances	 f1	
s1={}	 No	
s2={eu}	 No	
s3={sa}	 No	
s4={pe}	 Yes	
s5={sa,eu}	 Yes	
s6={pe,eu}	 Yes	
s7={pe,sa}	 Yes	
s8={pe,sa,eu}	 Yes	

s
4

|= AXp(pe, Yes)

s
2

|= CXp(¬sa, No)
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Explanations

Counterfactual explanation:

CfXp(', x) =
def

t(x) ^
�
¬' ) ¬t(x)

�

Remark: Lewis-like conditional ) defined as an abbreviation in
finite-variable case (semantics based on Hamming dist.)

p,q	 p	

q	

t(1)	

t(0)	

t(1)	

t(1)	

CfXP(p,1)	

Only	closest	input	
instance	at	which		
p	is	false	
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Explanations

States/instances	 f1	
s1={}	 No	
s2={eu}	 No	
s3={sa}	 No	
s4={pe}	 Yes	
s5={sa,eu}	 Yes	
s6={pe,eu}	 Yes	
s7={pe,sa}	 Yes	
s8={pe,sa,eu}	 Yes	

s
2

|= CfXp(¬sa, No)
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Some remarkable properties

) Principle of su�cient reason (PSR):

Of everything whatsoever a cause or reason must be
assigned, either for its existence, or for its non-existence.
[Spinoza, Ethics, 1p11d2]

|=
Definite

t(x) !
_

�2Term

AXp(�, x)

) ‘Atomic’ CfXp and CXp coincide

|= CXp(l , x) $ CfXp(l , x) with l a literal
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Bias

Local bias:

Bias(x) =
def

t(x) ^ hNFi¬t(x)

with PF the set of protected features and NF = Atm
0

\ PF

|= Bias(x) $
_

Atm(�)✓PF

CXp(�, x)

Global bias:

GBias =
def

⌃I

� _

x2Val

Bias(x)
�
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Bias

Let PF = {eu}

States/instances	 f1	
s1={}	 No	
s2={eu}	 No	
s3={sa}	 No	
s4={pe}	 Yes	
s5={sa,eu}	 Yes	
s6={pe,eu}	 Yes	
s7={pe,sa}	 Yes	
s8={pe,sa,eu}	 Yes	

s
3

|= Bias(No)
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Outline

1 Explanations in “white box” classifiers

2 Explanations in “black box” classifiers

3 Open problems and future extensions
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From “white box” to “black box” classifiers

Two-dimensional semantics: instance⇥classifier

Horizontal dimension ⇡ uncertainty about classifier’s properties

Bimodal language

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	
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Bimodal language

' ::= p | t(x) | ¬' | ' ^ ' | ⇤I' | ⇤F'

with p ranging over Atm
0

and x ranging over Val

⇤I' ⇡ “the actual classifier necessarily satisfies ',

(regardless of the input instance)”

⇤F' ⇡ “the actual input instance necessarily satisfies ',

(regardless of the classifier)”
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Two-dimensional semantics

Definition

A multi-classifier model (MCM) is a pair �=(S , �) where:

S ✓ 2Atm

0 (set of input instances),

� ✓ ValS (set of possible classifiers).

Semantic interpretation of formulas wrt pointed MCM (�, s, f ) with
�=(S , �) an MCM, s 2 S and f 2 �:

(�, s, f ) |= p () p 2 s

(�, s, f ) |= t(x) () f (s) = x

(�, s, f ) |= ⇤I' () 8s 0 2 S : (�, s 0, f ) |= '

(�, s, f ) |= ⇤F' () 8f 0 2 � : (�, s, f 0) |= '
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Two-dimensional semantics

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

Bob is {sa} and (only) knows that:

his application was unsuccessful

necessarily not having a

permanent job and not having a

good salary will make loan

application unsuccessful

necessarily having a permanent

job will make loan application

successful

(s
3

, f
1

) |=⇤Ft(No)^
⇤F⇤I

�
(¬sa ^ ¬pe) ! t(No)

�
^

⇤F⇤I

�
pe ! t(Yes)

�
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Axiomatics for Atm0 finite

⌅ 2 {⇤I, ⇤F}
6 Xinghan Liu and Emiliano Lorini

�
⌅� � ⌅(� � �)

�
� ⌅� (K�)

⌅� � � (T�)
⌅� � ⌅⌅� (4�)
¬⌅� � ⌅¬⌅� (5�)
⇤F⇤I� � ⇤I⇤F� (Comm)

�

x�Val

t(x) (AtLeast
t(x))

t(x) � ¬t(y) if x �= y (AtMost
t(x))�

cnX,Atm0 � t(x)
�

� ⇤I

�
cnX,Atm0 � t(x)

�
(Funct)

p � ⇤Fp (Indep�F,p)
¬p � ⇤F¬p (Indep�F,¬p)
�

⌅�
(Nec�)

Table 1. Axioms and rules of inference, with ⌅ � {⇤I, ⇤F}

3.3 Infinite-Variable Case

We now move to the infinite-variable variant of our logic, under the assumption
that the set Atm0 is countably infinite. In order to obtain an axiomatics we just
need to drop the “functionality” Axiom Funct of Table 1. Indeed, when Atm0

is infinite, the construction cnX,Atm0 cannot be expressed in a finitary way.

Definition 6 (Logic WPLC). We define WPLC (Weak PLC) to be the exten-
sion of classical propositional logic given by Axioms K�, T�, 4�, 5�, Comm,
AtLeast

t(x), AtMost
t(x), Indep�F,p and Indep�F,¬p, and the rule of inference

Nec� in Table 1.

Soundness of the logic WPLC is a straightforward exercise. For completeness,
we need to distinguish MDMs from quasi-MDMs that are obtained by removing
the “functionality” Constraint C2 from Definition 3.

Definition 7 (Quasi-MDM). A quasi-MDM is a tuple M =(W, ��I
, ��F

, V )
where W , ��I

, ��F
and V are defined as in Definition 3 and which satisfies all

constraints of Definition 3 except C2.

The class of quasi-MDMs is noted QMDM. A quasi-MDM M =(W, ��I
, ��F

, V )
is said to be finite if W is finite. The class of finite quasi-MDMs is noted finite-
QMDM. Semantic interpretation of formulas in L relative to quasi-MDMs is
analogous to semantic interpretation relative to MDMs given in Definition 4.
Moreover, validity and satisfiability of formulas in L relative to class QMDM
(resp. finite-QMDM) is again defined in the usual way.

The first crucial result of this subsection is that when Atm0 is infinite the
language L cannot distinguish finite MDMs from finite quasi-MDMs.

) Satisfiability checking: polynomial
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(Funct)
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¬p � ⇤F¬p (Indep�F,¬p)
�
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(Nec�)

Table 1. Axioms and rules of inference, with ⌅ � {⇤I, ⇤F}

3.3 Infinite-Variable Case

We now move to the infinite-variable variant of our logic, under the assumption
that the set Atm0 is countably infinite. In order to obtain an axiomatics we just
need to drop the “functionality” Axiom Funct of Table 1. Indeed, when Atm0

is infinite, the construction cnX,Atm0 cannot be expressed in a finitary way.

Definition 6 (Logic WPLC). We define WPLC (Weak PLC) to be the exten-
sion of classical propositional logic given by Axioms K�, T�, 4�, 5�, Comm,
AtLeast

t(x), AtMost
t(x), Indep�F,p and Indep�F,¬p, and the rule of inference

Nec� in Table 1.

Soundness of the logic WPLC is a straightforward exercise. For completeness,
we need to distinguish MDMs from quasi-MDMs that are obtained by removing
the “functionality” Constraint C2 from Definition 3.

Definition 7 (Quasi-MDM). A quasi-MDM is a tuple M =(W, ��I
, ��F

, V )
where W , ��I

, ��F
and V are defined as in Definition 3 and which satisfies all

constraints of Definition 3 except C2.

The class of quasi-MDMs is noted QMDM. A quasi-MDM M =(W, ��I
, ��F

, V )
is said to be finite if W is finite. The class of finite quasi-MDMs is noted finite-
QMDM. Semantic interpretation of formulas in L relative to quasi-MDMs is
analogous to semantic interpretation relative to MDMs given in Definition 4.
Moreover, validity and satisfiability of formulas in L relative to class QMDM
(resp. finite-QMDM) is again defined in the usual way.

The first crucial result of this subsection is that when Atm0 is infinite the
language L cannot distinguish finite MDMs from finite quasi-MDMs.

) Satisfiability checking: in NEXPTIME

Idea of the proof: polynomial reduction into satisfiability checking for
product modal logic S52
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From objective to subjective explanation

Local Global
Objective AXp(�, x) PImp(�, x)
Subjective SubAXp(�, x) SubPImp(�, x)

Table: Objective vs subjective explanation

SubPImp(�, x) =
def

⇤FPImp(�, x)

SubAXp(�, x) =
def

⇤FAXp(�, x)
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A negative property

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

PSR principle does not hold in the “black box” setting:

(s
3

, f
1

) |= ⇤Ft(No) ^ ¬
_

�2Term

SubAXp(�, No)
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Extension: acquiring information about actual classifier

) Language:

' ::= p | t(x) | ¬' | ' ^ ' | ⇤I' | ⇤F' | ['!] 

['!] ⇡ “ holds after having discarded all classifiers

that do not globally satisfy property '”

) Semantic interpretation of dynamic modality ['!]:

(�, s, f ) |= ['!] () if (�, s, f ) |= ⇤I' then (�'!, s, f ) |=  

where �'! = (S'!, �'!) is the MCM such that:

S'! = S

�'! = {f 0 2 � : 8s 0 2 S , (�, s 0, f 0) |= '}
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Extension: acquiring information about actual classifier

Let PF = {eu}

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

Extension: acquiring information about actual classifier

Let PF = {eu}
GBias!

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

From “white box” to “black box” classifiers

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f3	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 Yes	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f4	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 Yes	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f3	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 Yes	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f4	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 Yes	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

Example 3

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f3	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 Yes	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f4	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 Yes	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

⇤F⇤I

�
(¬sa ^ ¬pe) ! t(No)

�

⇤F⇤I

�
pe ! t(Yes)

�

⇣
⌃I

�
sa ^ ¬pe ^ ¬eu ^ t(Yes)

�
!

⌃I

�
sa ^ ¬pe ^ eu ^ t(Yes)

�⌘
!

5

Bob learns that “there is a bias in favour of EU applicants” and, as a
consequence, he knows that the unsuccess of his application is
(abductively) explained by ¬pe ^ ¬eu

⌃I

�
eu ^ t(Yes) ^ h{pe, sa}it(No)

�
!

10

Bob learns that the classifier is biased

thereby being able to conclude that

unsuccess of his application is

(abductively) explained by ¬pe ^ ¬eu

(s
3

, f
1

) |=
⇥
GBias!

⇤
⇤FAXp(¬pe ^ ¬eu, No) 29

Bob learns that the classifier is biased

thereby being able to conclude that

unsuccess of his application is

(abductively) explained by ¬pe ^ ¬eu

(s
3

, f
1

) |=
⇥
GBias!

⇤
SubAXp(¬pe ^ ¬eu, No)

29



Axiomatics

Axiomatics for the static setting plus the following valid equivalences:

['!]p $(⇤I' ! p)

['!]t(x) $
�
⇤I' ! t(x)

�

['!]¬ $(⇤I' ! ¬['!] )

['!]( 
1

^  
2

) $
�
['!] 

1

^ ['!] 
2

�

['!]⇤I $(⇤I' ! ⇤I['!] )

['!]⇤F $(⇤I' ! ⇤F['!] )

and the following rule of replacement of equivalents:

'
1

$ '
2

 $  ['
1

/'
2

]

) Decidability via the reduction axioms
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Outline

1 Explanations in “white box” classifiers

2 Explanations in “black box” classifiers

3 Open problems and future extensions
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Open problems

Exact complexity of satisfiability checking for the logic of “black
box” classifiers

Identify interesting NP fragments:

Bounding modal depth
Single alternation of ⇤F/⌃F and ⇤I/⌃I modalities su�cient for
defining subjective explanation

Complexity of dynamic extension
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Deontic extension

Definition

A multi-classifier model with ideality (MCMI) is a triple � = (S , �, �)
with (S , �) an MCM and � a partial preorder on �.

f � f 0: classifier f 0 is at least as good/ideal as classifier f

“Betterness” modality [�] interpreted wrt pointed MCMI (�, s, f ):

(�, s, f ) |= [�]' () 8f 0 2 �, if f � f 0 then (�, s, f 0) |= '

Expressive power:

Obligation modality:

Oblig ' =
def

⌃
F

[�]'

Prohibition to have biases:

Oblig ¬GBias
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Multi-agent generalization and interactive explanation

Bob	

f2	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f3	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 Yes	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f1	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 No	

s4={pe}	 Yes	

s5={sa,eu}	 Yes	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

f4	

s1={}	 No	

s2={eu}	 No	

s3={sa}	 Yes	

s4={pe}	 Yes	

s5={sa,eu}	 No	

s6={pe,eu}	 Yes	

s7={pe,sa}	 Yes	

s8={pe,sa,eu}	 Yes	

Bob	

Ann	 Ann	

Formal semantics: multi-agent belief bases [Lorini, 2020, AIJ]
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