

Non-Classical Logics for Explanations in AI Systems

Emiliano Lorini
IRIT-CNRS, Toulouse University, France

9 November 2022
XAI Seminar @ Imperial

Logic-based approaches to explanation

- Different notions of explanation are studied in the XAI domain
 - Abductive
 - Contrastive
 - Counterfactual
- Logic-based XAI mostly based on propositional logic (PL)

- Fundamental building blocks of explanation:
 - Counterfactual dependence
 - Variance/invariance:

*[I]nvariance is a **modal** notion – it has to do with whether a relationship would remain stable under various hypothetical changes [Woodward 2002, p. 225].*
- Imperfect knowledge of the classifier (“black box”)
⇒ Epistemic/subjective explanation
- Beyond PL: need for more **expressive** languages
- Non-classical logics:
 - Modal logic (ML)
 - Conditional logic (CL)
 - Epistemic logic (EL), dynamic EL (DEL)
 - Deontic logic (DL)

- 1 Explanations in “white box” classifiers
- 2 Explanations in “black box” classifiers
- 3 Open problems and future extensions

- 1 Explanations in “white box” classifiers
- 2 Explanations in “black box” classifiers
- 3 Open problems and future extensions

Reasoning about “white box” classifiers

Main idea: a binary input classifier is a partition of all possible input instances in an S5 Kripke model

Permanent job (<i>pe</i>)	> 3000 € monthly salary (<i>sa</i>)	EU citizenship (<i>eu</i>)	Loan
0	0	0	No
0	0	1	No
0	1	0	No
1	0	0	Yes
0	1	1	Yes
1	0	1	Yes
1	1	0	Yes
1	1	1	Yes

Figure: A classifier

States/instances	f_1
$s_1=\{\}$	No
$s_2=\{eu\}$	No
$s_3=\{sa\}$	No
$s_4=\{pe\}$	Yes
$s_5=\{sa,eu\}$	Yes
$s_6=\{pe,eu\}$	Yes
$s_7=\{pe,sa\}$	Yes
$s_8=\{pe,sa,eu\}$	Yes

Figure: Its S5 representation

- Atm_0 : countable set of atoms representing input features
- Val : finite set of classification values (or classes)

Definition (Classifier model)

A **classifier model** (CM) is a tuple $C = (S, f)$ where

- $S \subseteq 2^{Atm_0}$ is a set of input instances,
- $f : S \rightarrow Val$ is a classification function.

Modal language

$$\varphi ::= p \mid t(x) \mid \neg\varphi \mid \varphi \wedge \varphi \mid \Box_I \varphi$$

with p ranging over Atm_0 and x ranging over Val

$t(x)$ \approx “the actual input instance is classified as x ”

$\Box_I \varphi$ \approx “the classifier *necessarily* satisfies φ ”

\approx “ φ is true for all input instances of the classifier”

Semantic interpretation wrt CM $C = (S, f)$ and $s \in S$ (pointed CM):

$$(C, s) \models p \iff p \in s$$

$$(C, s) \models t(x) \iff f(s) = x$$

$$(C, s) \models \Box_I \varphi \iff \forall s' \in S : (C, s') \models \varphi$$

Useful “ceteris paribus” modalities

Let $X \subseteq Atm_0$ finite:

$$[X]\varphi =_{def} \bigwedge_{Y \subseteq X} \left(\left(\bigwedge_{p \in Y} \wedge \bigwedge_{p \in X \setminus Y} \neg p \right) \rightarrow \square_I \left(\left(\bigwedge_{p \in Y} \wedge \bigwedge_{p \in X \setminus Y} \neg p \right) \rightarrow \varphi \right) \right)$$

We have:

$$(C, s) \models [X]\varphi \iff \forall s' \in S : \text{if } (s \cap X) = (s' \cap X) \text{ then } (C, s') \models \varphi$$

$[X]\varphi \approx \text{“}\varphi \text{ is true all atoms in } X \text{ being equal”}$

$\approx \text{“}\varphi \text{ is true regardless of the value of the atoms in } Atm_0 \setminus X\text{”}$

Useful “ceteris paribus” modalities

- Connection with prop. **dependence logic** [Yang & Väänänen, 2016]
- Dependence atom (“ q only depends on p_1, \dots, p_k ”):

$$\text{Dep}(p_1, \dots, p_k, q) =_{\text{def}} [\emptyset] (q \rightarrow [\{p_1, \dots, p_k\}]q) \wedge \\ [\emptyset] (\neg q \rightarrow [\{p_1, \dots, p_k\}] \neg q)$$

	Finite (fixed) variables	Infinite variables
Modalities $[X]$ are defined as abbreviations	Polynomial	NP-complete
Modalities $[X]$ are primitives	Polynomial	NEXPTIME-complete

Table: Summary of complexity results

Explanations

Let λ be a term (conjunction of literals):

- Prime implicant:

$$\text{PImp}(\lambda, x) =_{\text{def}} [\emptyset] \left(\lambda \rightarrow (t(x) \wedge \bigwedge_{p \in Atm(\lambda)} \langle Atm(\lambda) \setminus \{p\} \rangle \neg t(x)) \right)$$

- Abductive explanation:

$$\text{AXp}(\lambda, x) =_{\text{def}} \lambda \wedge \text{PImp}(\lambda, x)$$

- Contrastive explanation:

$$\begin{aligned} \text{Cxp}(\lambda, x) =_{\text{def}} & \lambda \wedge \langle Atm_0 \setminus Atm(\lambda) \rangle \neg t(x) \wedge \\ & \bigwedge_{p \in Atm(\lambda)} [(Atm_0 \setminus Atm(\lambda)) \cup \{p\}] t(x) \end{aligned}$$

Explanations

States/instances	f_1
$s_1 = \{\}$	No
$s_2 = \{eu\}$	No
$s_3 = \{sa\}$	No
$s_4 = \{pe\}$	Yes
$s_5 = \{sa, eu\}$	Yes
$s_6 = \{pe, eu\}$	Yes
$s_7 = \{pe, sa\}$	Yes
$s_8 = \{pe, sa, eu\}$	Yes

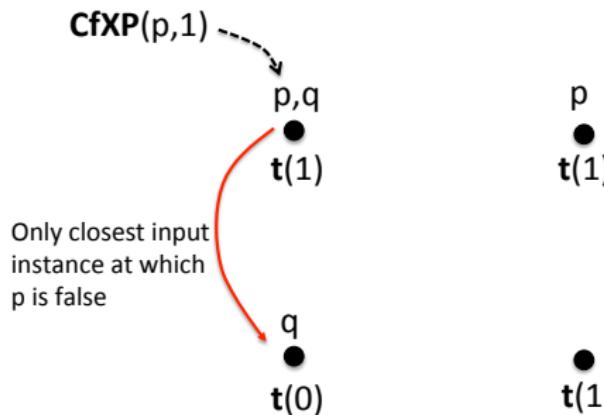
$$s_4 \models \text{AXp}(pe, \text{Yes})$$

$$s_2 \models \text{CXp}(\neg sa, \text{No})$$

- Counterfactual explanation:

$$\mathbf{CfXp}(\varphi, x) =_{def} t(x) \wedge (\neg\varphi \Rightarrow \neg t(x))$$

Remark: Lewis-like conditional \Rightarrow defined as an abbreviation in finite-variable case (semantics based on Hamming dist.)



Explanations

States/instances	f_1
$s_1 = \{\}$	No
$s_2 = \{eu\}$	No
$s_3 = \{sa\}$	No
$s_4 = \{pe\}$	Yes
$s_5 = \{sa, eu\}$	Yes
$s_6 = \{pe, eu\}$	Yes
$s_7 = \{pe, sa\}$	Yes
$s_8 = \{pe, sa, eu\}$	Yes

$$s_2 \models \text{CfXp}(\neg sa, No)$$

⇒ Principle of sufficient reason (PSR):

Of everything whatsoever a cause or reason must be assigned, either for its existence, or for its non-existence.
[Spinoza, Ethics, 1p11d2]

$$\models_{\text{Definite}} t(x) \rightarrow \bigvee_{\lambda \in \text{Term}} \text{AXp}(\lambda, x)$$

⇒ 'Atomic' CfXp and CXp coincide

$$\models \text{CXp}(l, x) \leftrightarrow \text{CfXp}(l, x) \text{ with } l \text{ a literal}$$

Local bias:

$$\text{Bias}(x) =_{def} t(x) \wedge \langle \text{NF} \rangle \neg t(x)$$

with PF the set of protected features and $\text{NF} = \text{Atm}_0 \setminus \text{PF}$

$$\models \text{Bias}(x) \leftrightarrow \bigvee_{\text{Atm}(\lambda) \subseteq \text{PF}} \text{CXP}(\lambda, x)$$

Global bias:

$$\text{GBias} =_{def} \Diamond_I \left(\bigvee_{x \in \text{Val}} \text{Bias}(x) \right)$$

Let $PF = \{eu\}$

States/instances	f_1
$s_1 = \{\}$	No
$s_2 = \{eu\}$	No
$s_3 = \{sa\}$	No
$s_4 = \{pe\}$	Yes
$s_5 = \{sa, eu\}$	Yes
$s_6 = \{pe, eu\}$	Yes
$s_7 = \{pe, sa\}$	Yes
$s_8 = \{pe, sa, eu\}$	Yes

$s_3 \models \text{Bias}(No)$

- 1 Explanations in “white box” classifiers
- 2 Explanations in “black box” classifiers
- 3 Open problems and future extensions

From “white box” to “black box” classifiers

- Two-dimensional semantics: instance \times classifier
- Horizontal dimension \approx uncertainty about classifier's properties
- Bimodal language

Bob

	f_1
$s_1 = \{\}$	No
$s_2 = \{eu\}$	No
$s_3 = \{sa\}$	No
$s_4 = \{pe\}$	Yes
$s_5 = \{sa,eu\}$	Yes
$s_6 = \{pe,eu\}$	Yes
$s_7 = \{pe,sa\}$	Yes
$s_8 = \{pe,sa,eu\}$	Yes

	f_2
$s_1 = \{\}$	No
$s_2 = \{eu\}$	No
$s_3 = \{sa\}$	No
$s_4 = \{pe\}$	Yes
$s_5 = \{sa,eu\}$	No
$s_6 = \{pe,eu\}$	Yes
$s_7 = \{pe,sa\}$	Yes
$s_8 = \{pe,sa,eu\}$	Yes

Bimodal language

$$\varphi ::= p \mid t(x) \mid \neg\varphi \mid \varphi \wedge \varphi \mid \Box_I \varphi \mid \Box_F \varphi$$

with p ranging over Atm_0 and x ranging over Val

$\Box_I \varphi$ \approx “the actual classifier *necessarily* satisfies φ ,
(regardless of the input instance)”

$\Box_F \varphi$ \approx “the actual input instance *necessarily* satisfies φ ,
(regardless of the classifier)”

Definition

A **multi-classifier model (MCM)** is a pair $\Gamma = (S, \Phi)$ where:

- $S \subseteq 2^{Atm_0}$ (set of input instances),
- $\Phi \subseteq Val^S$ (set of possible classifiers).

Semantic interpretation of formulas wrt **pointed MCM** (Γ, s, f) with $\Gamma = (S, \Phi)$ an MCM, $s \in S$ and $f \in \Phi$:

$$(\Gamma, s, f) \models p \iff p \in s$$

$$(\Gamma, s, f) \models t(x) \iff f(s) = x$$

$$(\Gamma, s, f) \models \Box_I \varphi \iff \forall s' \in S : (\Gamma, s', f) \models \varphi$$

$$(\Gamma, s, f) \models \Box_F \varphi \iff \forall f' \in \Phi : (\Gamma, s, f') \models \varphi$$

Two-dimensional semantics

Bob

	f_1		f_2
$s_1 = \{\}$	No	$s_1 = \{\}$	No
$s_2 = \{eu\}$	No	$s_2 = \{eu\}$	No
$s_3 = \{sa\}$	No	$s_3 = \{sa\}$	No
$s_4 = \{pe\}$	Yes	$s_4 = \{pe\}$	Yes
$s_5 = \{sa, eu\}$	Yes	$s_5 = \{sa, eu\}$	No
$s_6 = \{pe, eu\}$	Yes	$s_6 = \{pe, eu\}$	Yes
$s_7 = \{pe, sa\}$	Yes	$s_7 = \{pe, sa\}$	Yes
$s_8 = \{pe, sa, eu\}$	Yes	$s_8 = \{pe, sa, eu\}$	Yes

Bob is $\{sa\}$ and (only) knows that:

- his application was unsuccessful
- necessarily not having a permanent job and not having a good salary will make loan application unsuccessful
- necessarily having a permanent job will make loan application successful

$$(s_3, f_1) \models \Box_F t(\text{No}) \wedge$$

$$\Box_F \Box_I ((\neg sa \wedge \neg pe) \rightarrow t(\text{No})) \wedge$$

$$\Box_F \Box_I (pe \rightarrow t(\text{Yes}))$$

Axiomatics for Atm_0 finite

$$\blacksquare \in \{\square_I, \square_F\}$$

$(\blacksquare\varphi \wedge \blacksquare(\varphi \rightarrow \psi)) \rightarrow \blacksquare\psi$	(K \blacksquare)
$\blacksquare\varphi \rightarrow \varphi$	(T \blacksquare)
$\blacksquare\varphi \rightarrow \blacksquare\blacksquare\varphi$	(4 \blacksquare)
$\neg\blacksquare\varphi \rightarrow \blacksquare\neg\blacksquare\varphi$	(5 \blacksquare)
$\square_F \square_I \varphi \leftrightarrow \square_I \square_F \varphi$	(Comm)
$\bigvee_{x \in Val} t(x)$	(AtLeast $t(x)$)
$t(x) \rightarrow \neg t(y)$ if $x \neq y$	(AtMost $t(x)$)
$(\mathbf{cn}_{X, Atm_0} \wedge t(x)) \rightarrow \square_I (\mathbf{cn}_{X, Atm_0} \rightarrow t(x))$	(Funct)
$p \rightarrow \square_F p$	(Indep \square_F, p)
$\neg p \rightarrow \square_F \neg p$	(Indep $\square_F, \neg p$)
$\frac{\varphi}{\blacksquare\varphi}$	(Nec \blacksquare)

⇒ Satisfiability checking: **polynomial**

Axiomatics for Atm_0 infinite

$$\blacksquare \in \{\square_I, \square_F\}$$

$$(\blacksquare\varphi \wedge \blacksquare(\varphi \rightarrow \psi)) \rightarrow \blacksquare\psi \quad (K_{\blacksquare})$$

$$\blacksquare\varphi \rightarrow \varphi \quad (T_{\blacksquare})$$

$$\blacksquare\varphi \rightarrow \blacksquare\blacksquare\varphi \quad (4_{\blacksquare})$$

$$\neg\blacksquare\varphi \rightarrow \blacksquare\neg\blacksquare\varphi \quad (5_{\blacksquare})$$

$$\square_F \square_I \varphi \leftrightarrow \square_I \square_F \varphi \quad (\text{Comm})$$

$$\bigvee_{x \in Val} t(x) \quad (\text{AtLeast}_{t(x)})$$

$$t(x) \rightarrow \neg t(y) \text{ if } x \neq y \quad (\text{AtMost}_{t(x)})$$

$$(\text{cn}_{X, Atm_0} \wedge t(x)) \rightarrow \square_I (\text{cn}_{X, Atm_0} \rightarrow t(x)) \quad (\text{Funct})$$

$$p \rightarrow \square_F p \quad (\text{Indep}_{\square_F, p})$$

$$\neg p \rightarrow \square_F \neg p \quad (\text{Indep}_{\square_F, \neg p})$$

$$\frac{\varphi}{\blacksquare\varphi} \quad (\text{Nec}_{\blacksquare})$$

\Rightarrow Satisfiability checking: in **NEXPTIME**

Idea of the proof: polynomial reduction into satisfiability checking for product modal logic S5²

From objective to subjective explanation

	Local	Global
Objective	$AXp(\lambda, x)$	$PImp(\lambda, x)$
Subjective	$SubAXp(\lambda, x)$	$SubPImp(\lambda, x)$

Table: Objective vs subjective explanation

$$SubPImp(\lambda, x) =_{def} \square_F PImp(\lambda, x)$$

$$SubAXp(\lambda, x) =_{def} \square_F AXp(\lambda, x)$$

A negative property

Bob

	f_1		f_2
$s_1 = \{\}$	No	$s_1 = \{\}$	No
$s_2 = \{eu\}$	No	$s_2 = \{eu\}$	No
$s_3 = \{sa\}$	No	$s_3 = \{sa\}$	No
$s_4 = \{pe\}$	Yes	$s_4 = \{pe\}$	Yes
$s_5 = \{sa, eu\}$	Yes	$s_5 = \{sa, eu\}$	No
$s_6 = \{pe, eu\}$	Yes	$s_6 = \{pe, eu\}$	Yes
$s_7 = \{pe, sa\}$	Yes	$s_7 = \{pe, sa\}$	Yes
$s_8 = \{pe, sa, eu\}$	Yes	$s_8 = \{pe, sa, eu\}$	Yes

PSR principle does not hold in the “black box” setting:

$$(s_3, f_1) \models \Box_F t(No) \wedge \neg \bigvee_{\lambda \in Term} \text{SubAXp}(\lambda, No)$$

Extension: acquiring information about actual classifier

⇒ **Language:**

$$\varphi ::= p \mid t(x) \mid \neg\varphi \mid \varphi \wedge \varphi \mid \Box_I \varphi \mid \Box_F \varphi \mid [\varphi!] \psi$$

$[\varphi!] \psi \approx \text{"}\psi\text{ holds after having discarded all classifiers that do not globally satisfy property }\varphi\text{"}$

⇒ **Semantic interpretation** of dynamic modality $[\varphi!]$:

$$(\Gamma, s, f) \models [\varphi!] \psi \iff \text{if } (\Gamma, s, f) \models \Box_I \varphi \text{ then } (\Gamma^{\varphi!}, s, f) \models \psi$$

where $\Gamma^{\varphi!} = (S^{\varphi!}, \Phi^{\varphi!})$ is the MCM such that:

$$S^{\varphi!} = S$$

$$\Phi^{\varphi!} = \{f' \in \Phi : \forall s' \in S, (\Gamma, s', f') \models \varphi\}$$

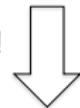
Extension: acquiring information about actual classifier

Let $\text{PF} = \{eu\}$

Bob

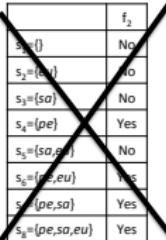
	f_1	
$s_1 = \{\}$	No	
$s_2 = \{eu\}$	No	
$s_3 = \{sa\}$	No	
$s_4 = \{pe\}$	Yes	
$s_5 = \{sa, eu\}$	Yes	
$s_6 = \{pe, eu\}$	Yes	
$s_7 = \{pe, sa\}$	Yes	
$s_8 = \{pe, sa, eu\}$	Yes	

GBias!



Bob

	f_1	
$s_1 = \{\}$	No	
$s_2 = \{eu\}$	No	
$s_3 = \{sa\}$	No	
$s_4 = \{pe\}$	Yes	
$s_5 = \{sa, eu\}$	Yes	
$s_6 = \{pe, eu\}$	Yes	
$s_7 = \{pe, sa\}$	Yes	
$s_8 = \{pe, sa, eu\}$	Yes	



Bob learns that the classifier is biased thereby being able to conclude that unsucces of his application is (*abductively*) explained by $\neg pe \wedge \neg eu$

$$(s_3, f_1) \models [\text{GBias!}] \text{SubAXp}(\neg pe \wedge \neg eu, \text{No})$$

Axiomatics for the static setting *plus* the following valid equivalences:

$$[\varphi!]p \leftrightarrow (\Box_I \varphi \rightarrow p)$$

$$[\varphi!]t(x) \leftrightarrow (\Box_I \varphi \rightarrow t(x))$$

$$[\varphi!] \neg \psi \leftrightarrow (\Box_I \varphi \rightarrow \neg [\varphi!] \psi)$$

$$[\varphi!](\psi_1 \wedge \psi_2) \leftrightarrow ([\varphi!] \psi_1 \wedge [\varphi!] \psi_2)$$

$$[\varphi!] \Box_I \psi \leftrightarrow (\Box_I \varphi \rightarrow \Box_I [\varphi!] \psi)$$

$$[\varphi!] \Box_F \psi \leftrightarrow (\Box_I \varphi \rightarrow \Box_F [\varphi!] \psi)$$

and the following rule of replacement of equivalents:

$$\frac{\varphi_1 \leftrightarrow \varphi_2}{\psi \leftrightarrow \psi[\varphi_1/\varphi_2]}$$

⇒ **Decidability** via the reduction axioms

- 1 Explanations in “white box” classifiers
- 2 Explanations in “black box” classifiers
- 3 Open problems and future extensions

- Exact complexity of satisfiability checking for the logic of “black box” classifiers
- Identify interesting NP fragments:
 - Bounding modal depth
 - Single alternation of \Box_F/\Diamond_F and \Box_I/\Diamond_I modalities sufficient for defining subjective explanation
- Complexity of dynamic extension

Definition

A **multi-classifier model with ideality (MCMI)** is a triple $\Gamma = (S, \Phi, \preceq)$ with (S, Φ) an MCM and \preceq a partial preorder on Φ .

$f \preceq f'$: classifier f' is at least as good/ideal as classifier f

“**Betterness**” modality $[\preceq]$ interpreted wrt pointed MCMI (Γ, s, f) :

$$(\Gamma, s, f) \models [\preceq]\varphi \iff \forall f' \in \Phi, \text{ if } f \preceq f' \text{ then } (\Gamma, s, f') \models \varphi$$

Expressive power:

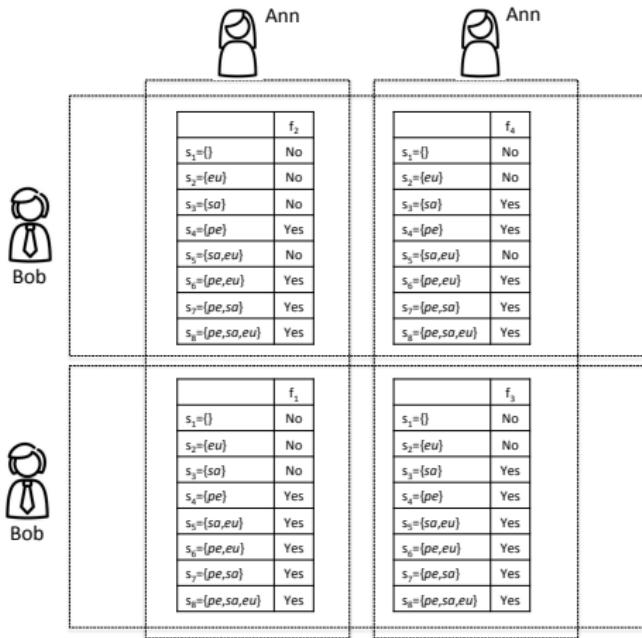
- Obligation modality:

$$\text{Oblig } \varphi =_{\text{def}} \Diamond_F [\preceq]\varphi$$

- Prohibition to have biases:

$$\text{Oblig } \neg \text{GBias}$$

Multi-agent generalization and interactive explanation



Formal semantics: multi-agent belief bases [Lorini, 2020, AIJ]

Liu, X., Lorini, E. (forthcoming). A unified logical framework for explanations in classifier systems. *Journal of Logic and Computation*.

Liu, X., Lorini, E., Rotolo, A., Sartor, G. (forthcoming). Modelling and explaining legal case-based reasoners through classifiers. *Proceedings of JURIX 2022*, IOS Press.

Liu, X., Lorini, E. (2022). A logic of “black box” classifier systems. *Proceedings of WOLLIC 2022*, Springer.

Liu, X., Lorini, E. (2021). A logic for binary classifiers and their explanation. *Proceedings of CLAR 2021*, Springer.