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unexpected behaviours and make mistakes that an “intelligent being” would never commit.
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Is it possible to build neural networks that:
e are guaranteed to be compliant with the constraints, and
e can learn from the constraints themselves?

&

* with some assumptions about the syntax of the constraints



Introduction

Focus on multi-label classification problems

W%V?

1. It is possible to assign a human-understandable semantics to the outputs

2. There often exist correlations among outputs

3. We often have background knowledge about such correlations

.

We can write hard logical constraints that define the admissible output
space of the developed models
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Hierarchical Constraints

Two classes: A, B

Constraint: A — B



An Introductory Example

Two classes: A, B

Constraint: A — B

Class A

Class B
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Standard Solution Standard Approach:

Two classes: A, B

Constraint: A — B

Class A Class B
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Standard Solution

Two classes: A, B

Constraint: A — B

tandard Approach:

Class A Class B
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Problem:

no guarantees to satisfy
A— B

no exploitation of
hierarchical knowledge

4
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Hierarchical Constraints Standard Approach:

Two classes: A, B

Constraint: A — B

Class A Class B

We implemented a simple
neural network with one hidden
layer and 7 neurons

\ /
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Hierarchical Constraints: Our Solution

Build a Max Constraint Module (MCM) on top of the standard neural network

MCM/ 4 = hy,
MCMB = max(hB,hA).
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Our solution

Build a Max Constraint Module on top of the standard neural network

MCM/ 4 = hy,

MCMB = max(hB, hA)

MCM can cause wrong
supervisions

A If ha > hp,ya = 0,yp = 1then we teach ya to increase instead of decreasing

MCLossg = —y4 In(MCM4) — (1 — y4) In(1 — MCM,),

MCLossg =

—yp In(max(hp,haya))

— (1 —ygp)In(1 — MCMp)).
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Our Solution: Back to the Example

Two classes: A, B

Constraint: A — B

Standard solution:

Class A Class B
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Our Solution: Back to the Example

Two classes: A, B

Constraint: A — B

Standard solution:

Class A

1.0

Class B

Our solution:

Class A

Class B
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Our Solution: Back to the Example

Two classes: A, B

Constraint: A — B

Output After Layer Output Before Layer:

Class A Class B Class A Class B

)




Hierarchical Constraints

Max Constraint Layer
For each label A

MCMy4 = é%%?i (hB) where D 4 is the set of of subclasses of A




Hierarchical Constraints

Max Constraint Layer

For each label A

MCMy = &%ﬁ (hB) where D 4 is the set of of subclasses of A

Max Constraint Loss

MCLoss = Z

AcA

——ya ln(lgnax (yph)) — (1 —ya)In(1 —MCMy,).

€DA




Experimental Analysis

Dataset CCN(h) HMC-LMLP Cvrus-EnNs \ HMCN-R HMCN-F
CeLLcYCLE FUN 0.255 0.207 0.227 0.247 0.252
Deristi FUN 0.195 0.182 0.187 0.189 0.193
EiseN FUN 0.306 0.245 0.286 0.298 0.298
ExpPr FUN 0.302 0.242 0.271 0.300 0.301
GascHl FUN 0.286 0.235 0.267 0.283 0.284
GascH2 FUN 0.258 0.211 0.231 0.249 0.254
SEQ FUN 0.292 0.236 0.284 0.290 0.291
Spo FUN 0.215 0.186 0.211 0.210 0.211
CELLCYCLE GO 0.413 0.361 0.387 0.395 0.400
DErist GO 0.370 0.343 0.361 0.368 0.369
EiseN GO 0.455 0.406 0.433 0.435 0.440
Expr GO 0.447 0.373 0.422 0.450 0.452
GascHl GO 0.436 0.380 0.415 0.416 0.428
GascH2 GO 0.414 0.371 0.395 0.463 0.465
SEQ GO 0.446 0.370 0.438 0.443 0.447
Spo GO 0.382 0.342 0.371 0.375 0.376
DiAToMs 0.758 - 0.501 0.514 0.530
ENRON 0.756 - 0.696 0.710 0.724
IMCLEFQO7A 0.956 - 0.803 0.904 0.950
IMCLEFO7D 0.927 - 0.881 0.897 0.920

AVERAGE RANKING 125 5.00 393 | 293 1.90
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Constraints as Normal Logic Rules

Al, . o ,Ak, ﬂAk_H, s b w5 —lAn — A Jlfadatapointis

associated with the
labels A,..... Ay

) )

and not with the labels
. Aki1,..., A, thenit
with 1 S k 8 k + 1 S n must be associated
with the label A




Goal

‘ ‘ Given a set of constraints I the final output M
M
should be:
Constraint .
Module (CM) e coherent with ]

e supported relative to H and 11

e minimal relative to . and 11

e unique
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Can we use the same idea as in the hierarchical case?

Hierarchy Constraints:

A— B

MCM4 = hy
MCMp = max (hp,ha)
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Can we use the same idea as in the hierarchical case?

Normal Logic Constraints:

Hierarchy Constraints:

yieE=al A -B—C
MCM4 = hy CMa = ha
CMp = hp

MCMp = max (hp,ha)
CM¢ = max (hg, min(ha,1 — hp))
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Can we use the same idea as in the hierarchical case?

Hierarchy Constraints: Normal Logic Constraints:
A— B A -B—C
MCM4 = hu CMy = ha
MCMp = max (hp, ha) LB
CM¢ = max (h¢g, min(ha,1 — hp))

Can this work with multiple constraints?
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Can we use the same idea as in the hierarchical case?

Hierarchy Constraints: Normal Logic Constraints:
A— B A -B—C
MCM4 = hu CMy = ha
MCMp = max (hp, ha) LB
CM¢ = max (h¢g, min(ha,1 — hp))
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Problems

Circularities

A — A
A;—>Aj @ @
T

m4, = max (ha,,ma,)

ma, = max (ha,,ma,)

Easy to solve: take the minimum of the set of the
tuples of values satisfying the equations.
In the example above:

ma, =ma, =max(ha,,ha,)




Problems

; - Negations _
Circularities + N
A - Ay L Ay (4, (A
Ap As @ @ _'A2 = Al
rx —
ma, = max (ha,,ma,) ma, :max(hAwl_mAz)
ma, = max (ha,,ma,) ma, = max (ha,,1 —ma,)
2 3 4 N
Easy to solve: take the minimum of the set of the Additior_ral assumplion needed: t.he Setol
tuples of values satisfying the equations. constraints 11 needs to be stratified.

In the example above: )
The set of constraints {—A; — Ay, ~As — A}
is not stratified.

2 - _J

maA, =My, =max(ha,, ha,)




Constraint Layer

_'A—>B le
-B—=C II, = {-A — B}

J\HjM\DDMg_ CM, 4 I3 ={-B— C}

1t stratum: CM 44 = hy
2" stratum: CM p = max (hB, 1 — CMA)
—COM; 34 stratum: CM -~ = max (hc, 1— CMB)

: Elementwise
Legend: e O [ty MGapgrens y




Experimental Analysis

Model ~ Arrs BusiNess CAL500 EMOTIONS ENRON GENBASE IMAGE MEDICAL Model Rcv1S1 RevlS2 RevlS3 ReviS4 ReviS5 SCIENCE SCENE YEAST
Average precision (1) Average precision ()
CCN(h) 0.623 0.904 0.520 0.800 0.704 0.996 0.807 0.866 CCN(h) 0.642 0.666 0.647 0.675 0.560 0.603 0.868 0.768
CAMEL 0.625 0.899 0.513 0.756 0.708 0.990 0.793 0.807 CAMEL 0.622 0.647 0.636 0.654 0.564 0.614 0.824 0.766
ECC 0.544 0.867 0.401 0.772 0.643 1.000 0.738 0.823 ECC 0.549 0.575 0.585 0.609 0.529 0.502 0.794 0.724
BR 0.546 0.863 0.441 0.793 0.643 1.000 0.726 0.823 BR 0.536 0.563 0.572 0.600 0.524 0.500 0.781 0.743
RAKEL 0.530 0.856 0.433 0.798 0.636 1.000 0.721 0.811 RAKEL  0.532 0.556 0.562 0.589 0.508 0.493 0.794 0.732
Coverage error (}) Coverage error ({)
CCN(h) 0.172 0.065 0.734 0.315 0.217 0.016 0.187 0.035 CCN(h) 0.092 0.089 0.103 0.080 0.107 0.131 0.077 0.452
CAMEL 0.202 0.083 0.791 0.372 0.256 0.010 0.201 0.036 CAMEL 0.131 0.115 0.123 0.103 0.130 0.162  0.106 0.457
ECC 0.223 0.089 0.853 0.338 0.285 0.009 0.242 0.045 ECC 0.185 0.166 0.167 0.169 0.196 0.225  0.127 049
BR 0.217 0.086 0.789 0.324 0.288 0.009 0.245 0.045 BR 0.194 0.181 0.178 0.184 0.210 0.227 0.128 0.476
RAKEL 0.221 0.085 0.791 0.317 0.294 0.009 0.250 0.049 RAKEL 0.201 0.180 0.185 0.195 0.209 0.225 0123 0481
Hamming loss (4) Hamming loss (})
CCN(h) 0.054 0.023 0.136 0.197 0.046 0.001 0.172 0.013 CCN(h) 0.026 0.022 0.024 0.019  0.025 0.031 0.092 0.196
CAMEL 0.055 0.023 0.138 0.265 0.047 0.003 0.174 0.024 CAMEL 0.027 0.022 0.024 0.021 0.025 0.031  0.109 0.196
ECC 0.081 0.031 0.172 0.245 0.055 0.001 0.218 0.019 ECC 0.031 0.027 0.028 0.026 0.030 0.049 0.131 0.221
BR 0.079 0.032 0.162 0.229 0.054 0.001 0.232 0.019 BR 0.032 0.028 0.029 0.027 0.031 0.051 0.151 0.214
RAKEL 0.082 0.034 0.165 0.223 0.055 0.001 0.225 0.019 RAKEL 0.033 0.029 0.030 0.027 0.031 0.051 0.130 0.225
Multi-label accuracy (1) Multi-label accuracy (1)
CCN(h) 0.238 0.601 0.203 0.534 0.395 0.986 0.488 0.589 CCN(h) 0.296 0.310 0.303 0.324 0.275 0.255 0.607 0.480
CAMEL 0.218 0.609 0.210 0.354 0.381 0.943 0.456 0.284 CAMEL 0.204 0.222 0.210 0.257 0.223 0.217  0.528 0.480
ECC 0.217 0.548 0.220 0.446 0.361 0.992 0.387 0.481 ECC 0.264 0.277 0.273 0.297 0.269 0.209 0478 0.443
BR 0.217  0.538 0.221 0.465 0.365 0.992 0369 0477 BR 0.263 0279 0275 0.289  0.263 0.200 0438 0456
RAKEL 0.215 0.527 0.222 0.485 0.361 0.992 0.376 0.481 RAKEL 0.263 0.272 0.268 0.290 0.258 0.201 0481 0445
One-error () One-error (})
CCN(h) 0475 0.093 0.113 0.273 0.235 0.000 0.296 0.181 CCN(h) 0.413 0.389 0.405 0.379  0.402 0.494 0.224 0.234
CAMEL 0.460 0.090 0.133 0.381 0.223 0.020 0.310 0.285 CAMEL 0.413 0.397 0413 0.399 0.414 0.472 0.287 0.231
ECC 0.568 0.137 0.378 0.332 0.309 0.000 0.392 0.251 ECC 0477 0.462 0.453 0.436 0.451 0.603  0.319 0.300
BR 0.567 0.147 0.232 0.292 0.299 0.000 0.425 0.251 BR 0.492 0.474 0.466 0.435 0.466 0.605 0.358 0.259
RAKEL 0.586 0.159 0.232 0.292 0.304 0.000  0.430 0.266 RAKEL 0.488 0.481 0471 0.439 0.474 0.606 0329 0.270
Ranking loss (1) Ranking loss ({)
CCN(h) 0.115 0.030 0.173 0.161 0.076 0.003 0.159 0.024 CCN(h) 0.036 0.035 0.046 0.035 0.046 0.094 0.073 0.172
CAMEL 0.136 0.040 0.189 0.237 0.086 0.001 0.177 0.026 CAMEL 0.051 0.048 0.050 0.046 0.054 0.117  0.101 0.173
ECC 0.158 0.046 0.257 0.193 0.107 0.001 0.231 0.033 ECC 0.086 0.078 0.078 0.086 0.093 0.176  0.103 0.208
BR 0.155  0.045 0.218 0.177 0.108  0.001 0234 0,032 BR 0.091 0.088  0.085 0.097  0.101 0177 0131 0.190

RAKEL 0.159  0.044 0.220 0.169 0.112 0.001  0.242 0.037 RAKEL 0.093 0.088 0.089 0.103 0.102 0.180  0.127  0.200




Outline

4. A Novel Benchmark for Neuro-symbolic Models [3]
5. Open Questions

6. Q&A

[1] Giunchiglia E., Lukasiewicz T., Coherent Hierarchical Multi-label Classification Networks, NeurlPS, 2020
[2] Giunchiglia E., Lukasiewicz T., Multi-label Classification Neural Networks with Hard Logical Constraints, JAIR, 2021
[3] Giunchiglia E., Stoian M., Khan S., Cuzzolin F., Lukasiewicz T., ROAD-R: The Autonomous Driving Dataset with Logical Requirements,MLJ, 2022



A Novel Benchmark for Neuro-symbolic Models

-

logical constraints!

How can we test novel neuro-symbolic models?

(¥

N

Problem: no realistic safety-critical dataset was annotated with

/




A Novel Benchmark for Neuro-symbolic Models

(£ N

Problem: no realistic safety-critical dataset was annotated with
logical constraints!

How can we test novel neuro-symbolic models?

(S /

C N

Solution: we created the first autonomous driving dataset with
requirements expressed as logical constraints

A )




Application Domain: Self-driving Cars

ROAD [5]: multi-label
classification dataset
for autonomous driving

[5] Gurkirt Singh et al. ROAD: The road event awareness dataset for autonomous driving. TPAMI, 2022



Dataset Annotations




Dataset Annotations




ROAD-R: Our Annotations

We annotated ROAD with 243 logical requirements on the output space
expressed as propositional logic rules

The requirements define the space of the admissible outputs

Some examples of constraints:

e A traffic light cannot be red and green at the same time
e An agent cannot move away and towards you at the same time
e An agent is either on the right pavement or on the left pavement

48



Quantitative Results

Neural networks very often violate even such simple requirements
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Qualitative Results
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Available Baselines

Incorporate the constraints during the training phase in the loss

Pros: neural network can learn from the constraints

Cons: no guarantee that the constraints will be satisfied

Include the post-processing at inference time

Pros: the constraints are guaranteed to be satisfied

Cons: the neural network is “unaware” of the post-processing step

51



Neuro-symbolic Baseline vs Standard NN

Comparison of the performance in terms of between the
standard models and the same models trained with the requirements loss and with post-processing

Model Standard Neuro-symbolic
Models Baseline

C2D 27.57 28.16

13D 30.12 31.21

RCGRU 30.78 31.81

RCLSTM 30.49 31.65

RCN 29.64 31.02

SlowFast 28.79 28.98
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Open Questions

e How can we integrate even more expressive constraints?

e Is it possible to seemingly integrate hard and soft constraints?

e Can we integrate not only constraints over the output space, but also
input/output constraints?

e Can we extend this approach to other problem types (e.g., binary

classification, regression etc.)?



Thank you! Questions?
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Other synthetic experiments

Class A Class B Class A Class B

\ A

Class A Class B

ﬂ
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Dependency graph

(" E
The dependency graph Gy of 11 is the directed graph having the set of labels as
nodes and with, for each constraint » € 11,

1. a positive edge from each class in body™ (r) to head(r),
2. a negative edge from each class A such that = A € body ™ (r) to head(r).

. . 4




Stratification

(A set of constraints [] is stratified if there is a partition 1, ..., II;of II, with II; possibly \
empty, such that, forevery i c {1,...,s}

® Forevery Ac | body™(r
rell;

® Forevery Ac | | body (r

rell;

), all the constraints with head A in II belong to Ui-zll—[?;

), all the constraints with head A in II belong to u;;ll I1;

\Hl, ..., 115 is a stratification of 11, and each H is a stratum.




Supported Set of Classes

-

Let (P,II)be an LCMC problem. Let  be a model forP. LetH be the set

and if foranydlassM A € H , or there exists a constrairil

\_

~

of classes predicted by . A set of classed! is supported relativetb 11

such/thatl(r) = A body (r) C M , and for-e&tke body ™ (r) B &, M

J
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Dependency graph

Il = {A1 — A; A2 — A; A,—1A1 — A2; A3 — A4}
A—+> - 1,772
) a a
v /
+ +
1 1
(a) G (b) DAGs from step 1 (c) Numbers from step 2

-Al = {Al)A37A4}’ A? ={A7 A2}
H1={A3—>A4} H2=H\H1



T-norms

Operation Minimum/Godel = Product Lukasiewicz
% l—2 l—2x l—2
TAY min(z, y) x-y max(0,z +y — 1)
zVy max(z,y) rT+y—x-y min(1, z + y)
T =Y r<y?ll:y min(l,%) z<y?l:1-(z—y)
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Inference time: Post-processing step

The problem of finding the optimal correction of a prediction can be formulated as a weighted partial
maximum satisfiability (PMaxSat) problem. How?

PMaxSat formulation:

o Hard clauses:
Prediction:

! —GreenTL VvV TL
{TL, GreenTL, RedTL} _RedTL VvV TL

—GreenTL V =-RedTL

Soft Clauses:

C1 TL

GreenTL. — TL
RedTL — TL c2 RedTL

GreenTL. — —RedTL c3GreenTL 62




CCN Performance by Level

B CNNY)
Clus-€ns.
D HMC-LMLP

(a) CeLLCYCLE FUN

= CNNh)
22 Clus-Ens

(c) EiseN FUN

(b) DERISI FUN

(d) Expr FUN

S5 ONN(h)
Clus-Ens.
G HMC-LMLP

Levels

(e) GascHl FUN

=R CNNh)
Clus-Ens.
G HMCLMLY

7

AIIINNN.

Levels

(g) SEQ FUN

(f) GascH2 FUN

(h) Spo FUN
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How can we avoid “meaningless” mistakes?

Requirements specification is a key step in standard software development

— Machine learning models development requires the same step



