

Robust Explainable AI: the Case of Counterfactual Explanations

27 October 2023

Francesco Leofante
f.leofante@imperial.ac.uk

About me

Imperial College Research Fellow
Centre for Explainable AI

Contacts:

- f.leofante@imperial.ac.uk
- <https://fraleo.github.io/>
- @fraleofante

Agenda

- Explainable AI
- Counterfactual explanations and recourse
- Robustness
 - **what** does it mean?
 - **why** is it needed?
 - **how** can we achieve it?

Explainable AI (XAI)

XAI methods span a wide range of topics within AI and beyond, e.g.

- automated planning
- machine learning
- human computer interaction

Explainable AI (XAI)

XAI methods span a wide range of topics within AI and beyond, e.g.

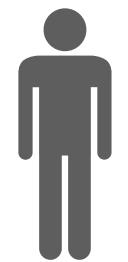
- automated planning
- machine learning
- human computer interaction

Today we will focus on **explaining deep neural networks (DNNs)**

- **high-level** concepts rather than specific algorithms
- **fictional** use case and explanations

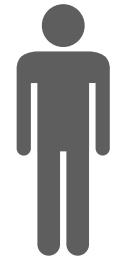
Supervised learning

Training set



- Age: 25
- Amount: £40K
- Duration: 36M

denied



- Age: 32
- Amount: £20K
- Duration: 24M

accepted

- Age: 82
- Amount: £26K
- Duration: 34M

denied

- Age: 54
- Amount: £14K
- Duration: 24M

accepted

Supervised learning

Training set

- Age: 25
- Amount: £40K
- Duration: 36M

denied

- Age: 32
- Amount: £20K
- Duration: 24M

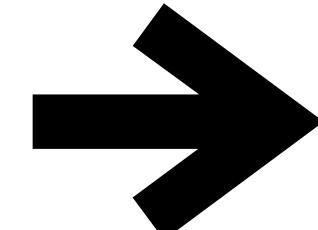
accepted

- Age: 82
- Amount: £26K
- Duration: 34M

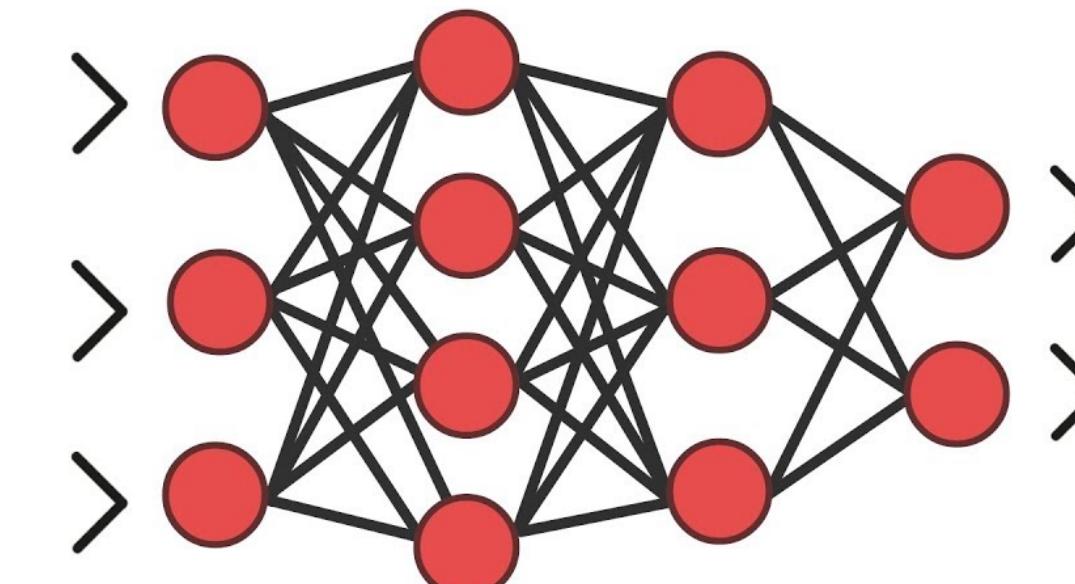
denied

- Age: 54
- Amount: £14K
- Duration: 24M

accepted

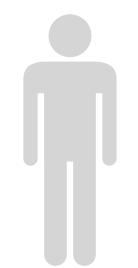


Deep neural network
(using your favourite algorithm)



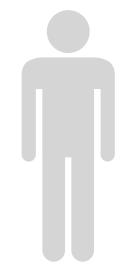
Supervised learning

Training set



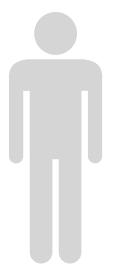
- Age: 25
- Amount: £40K
- Duration: 36M

denied



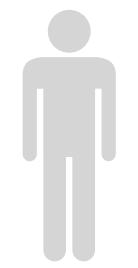
- Age: 32
- Amount: £20K
- Duration: 24M

accepted



- Age: 82
- Amount: £26K
- Duration: 34M

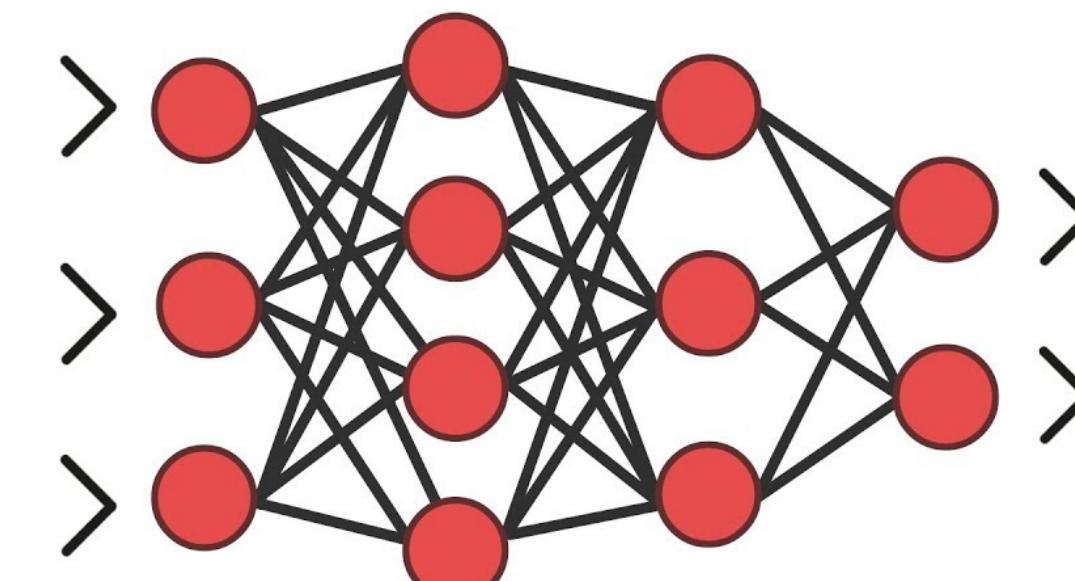
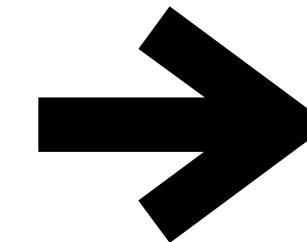
denied



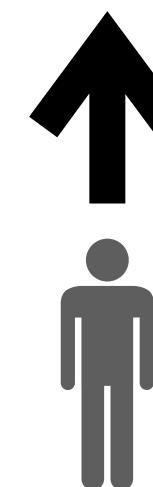
- Age: 54
- Amount: £14K
- Duration: 24M

accepted

Deep neural network (using your favourite algorithm)



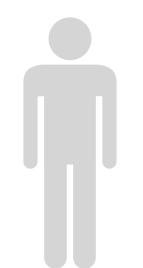
Predicted class:
denied



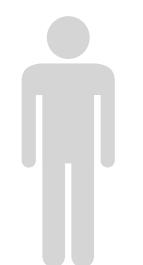
New instance

Supervised learning

Training set

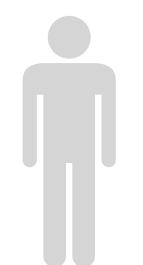


- Age: 25
- Amount: £40K
- Duration: 36M



- Age: 32
- Amount: £20K
- Duration: 24M

- Age: 82
- Amount: £26K
- Duration: 34M



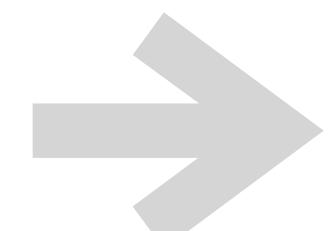
- Age: 54
- Amount: £14K
- Duration: 24M

denied

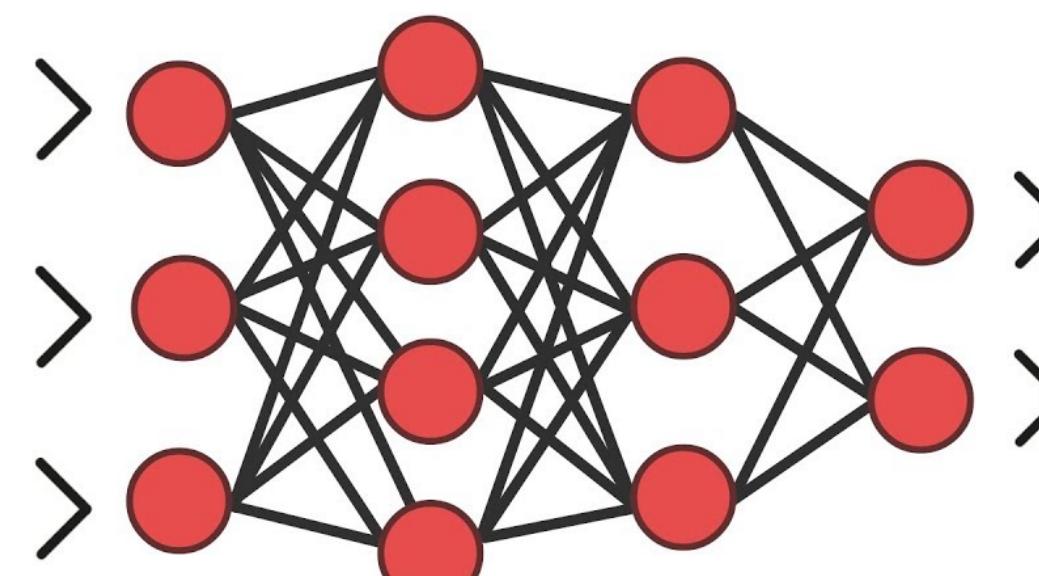
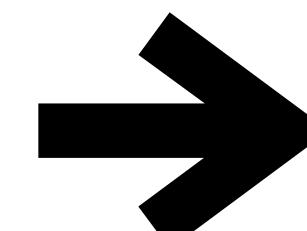
accepted

denied

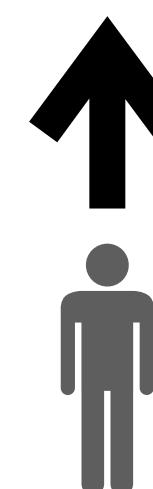
accepted



Focus: explaining model predictions



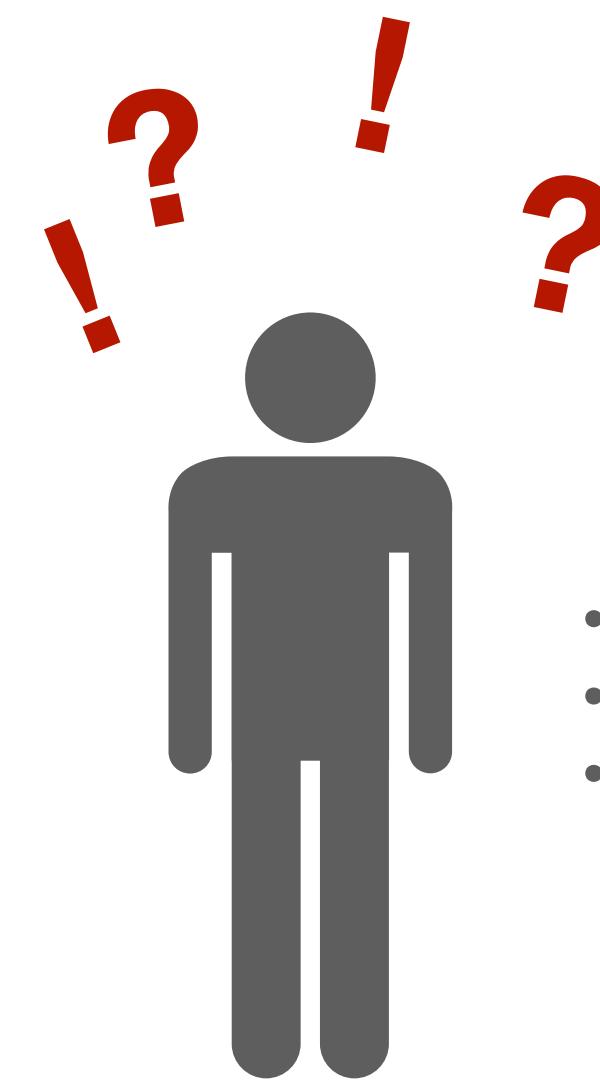
Predicted class:
denied



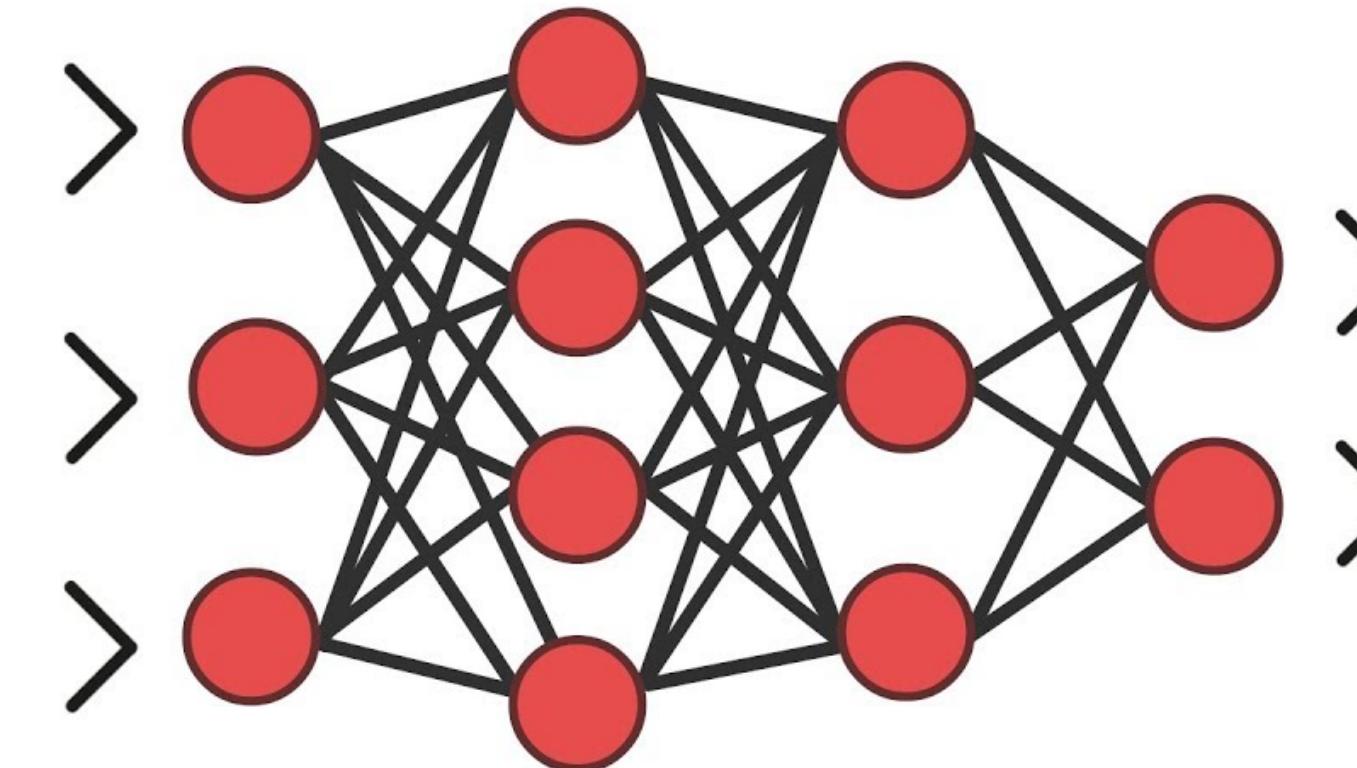
New instance

- Why is it denied?
- Why not accepted?
- How do I get accepted?
- And many more questions...

Challenge



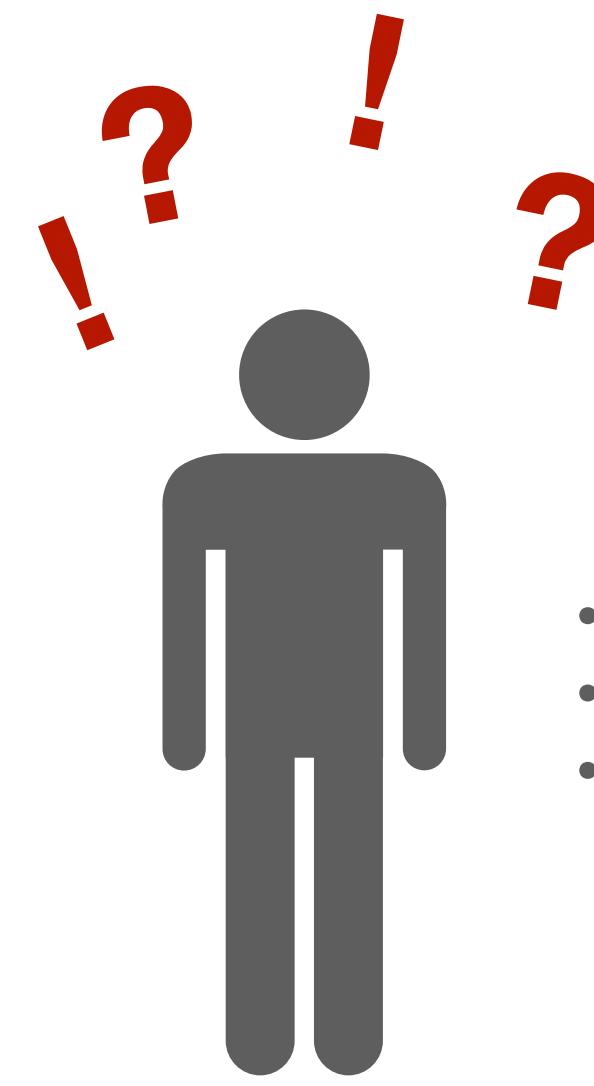
- Age: 30
- Amount: £15K
- Duration: 24M



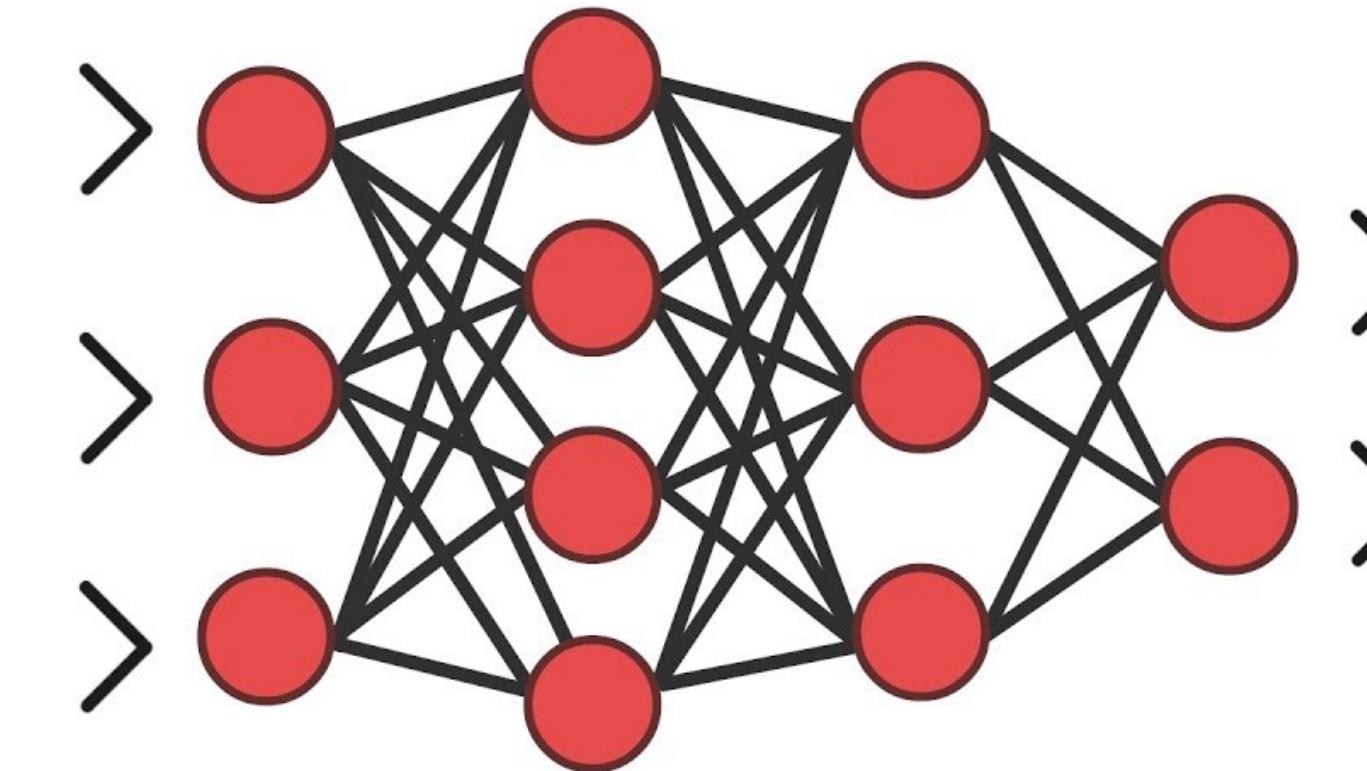
Loan denied

DNNs are black boxes!

Challenge



- Age: 30
- Amount: £15K
- Duration: 24M



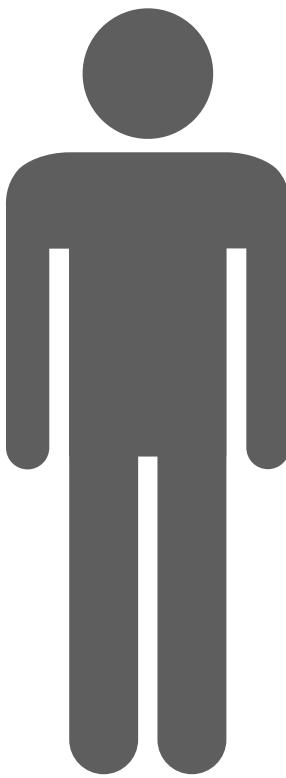
Loan denied

DNNs are black boxes!

Post-hoc explainability: counterfactual explanations

Counterfactual explanations (CXs)

Original instance

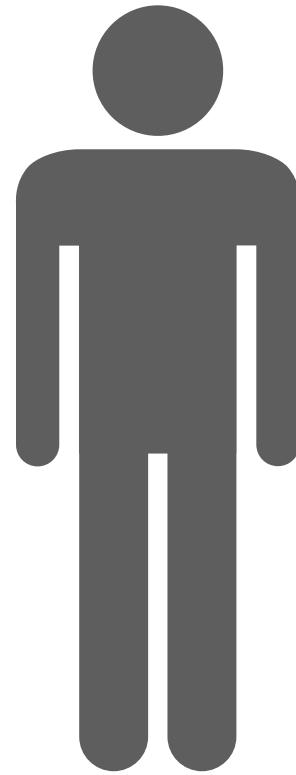


- Age: 30
- Amount: £15K
- Duration: 24M

Loan denied

Counterfactual explanations (CXs)

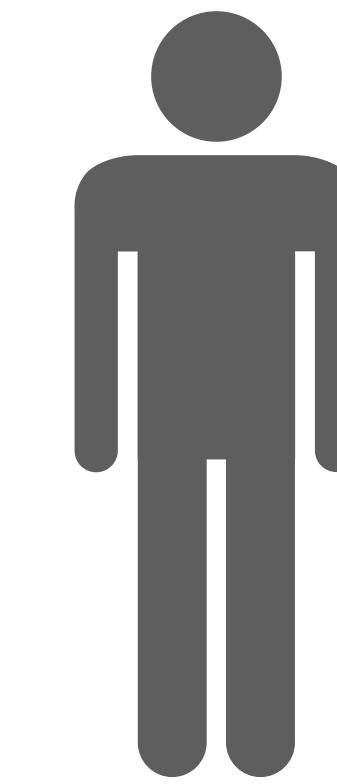
Original instance



- Age: 30
- Amount: £15K
- Duration: 24M

Loan denied

Counterfactual explanation



- Age: 30
- Amount: **£10K**
- Duration: 24M

The application would have been accepted
had you asked for £10K instead of £15K

Computing a CX

- Given an input x_F and a binary classifier \mathcal{M} such that $\mathcal{M}(x_F) = c$
- A distance function d

Computing a CX

- Given an input x_F and a binary classifier \mathcal{M} such that $\mathcal{M}(x_F) = c$
- A distance function d

A **counterfactual explanation** x is computed as:

$$\arg \min_x d(x_F, x)$$

subject to $\mathcal{M}(x) = 1 - c$

Computing a CX

Most approaches solve relaxation defined as:

$$\arg \min_x \ell(\mathcal{M}(x), 1 - c) + \lambda \cdot d(x_F, x)$$

Computing a CX

Most approaches solve relaxation defined as:

$$\arg \min_x \ell(\mathcal{M}(x), 1 - c) + \lambda \cdot d(x_F, x)$$

where:

- ℓ is a differentiable loss function which minimises the gap between current and desired prediction

Computing a CX

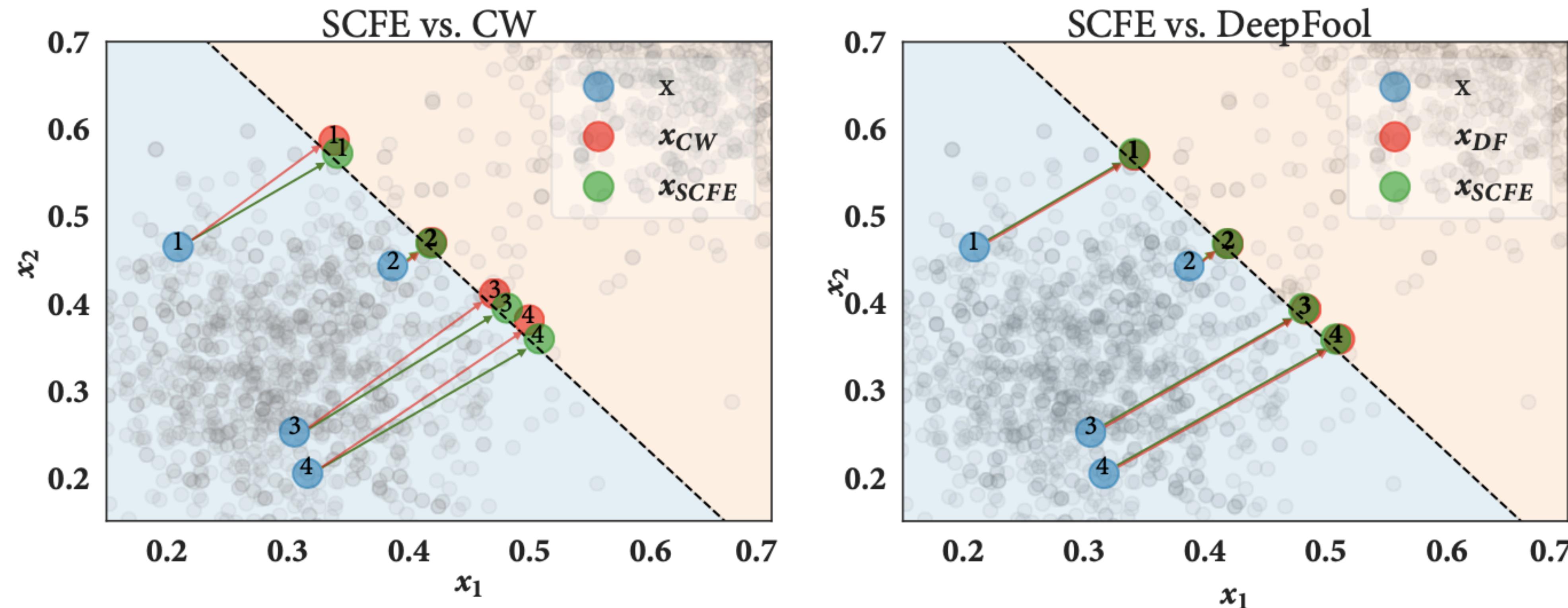
Most approaches solve relaxation defined as:

$$\arg \min_x \ell(\mathcal{M}(x), 1 - c) + \boxed{\lambda \cdot d(x_F, x)}$$

where:

- ℓ is a differentiable loss function which minimises the gap between current and desired prediction
- λ controls distance trade-off

Is minimising distance always good?



CXs are often **indistinguishable from **adversarial examples**!**

Brittle explanations ahead!

Threats

1. Model perturbations
2. Model multiplicity
3. Noisy execution

Robust XAI

Threats

1. Model perturbations
2. Model multiplicity
3. Noisy execution

Rethinking CX algos to mitigate these risks.

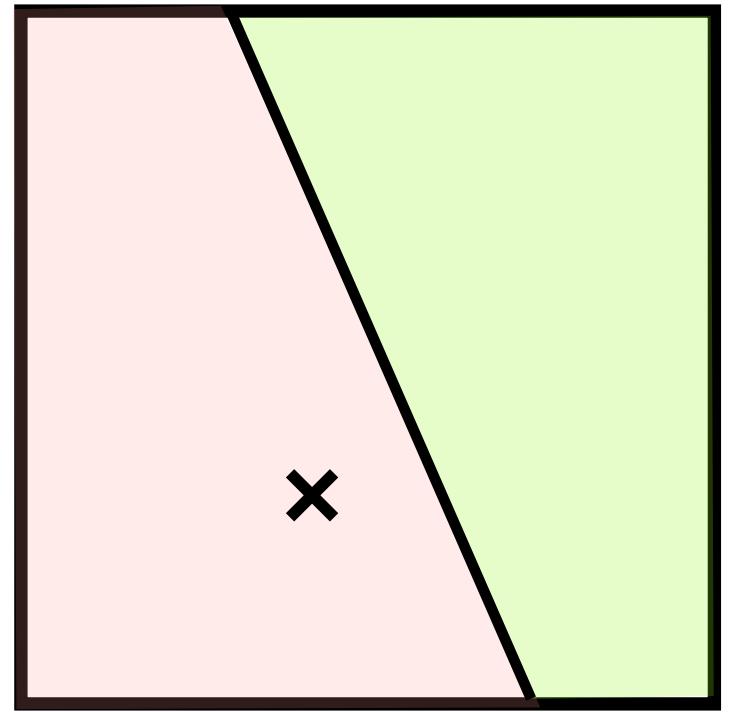
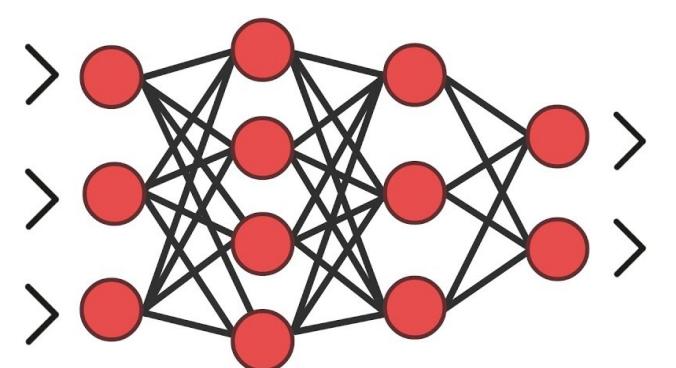
Brittle explanations ahead!

Threats

1. Model perturbations
2. Model multiplicity
3. Noisy execution

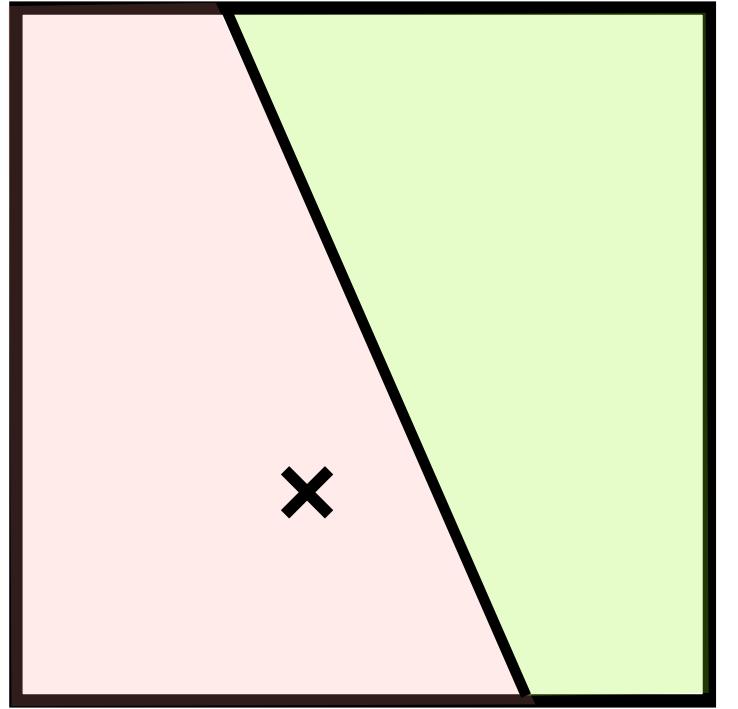
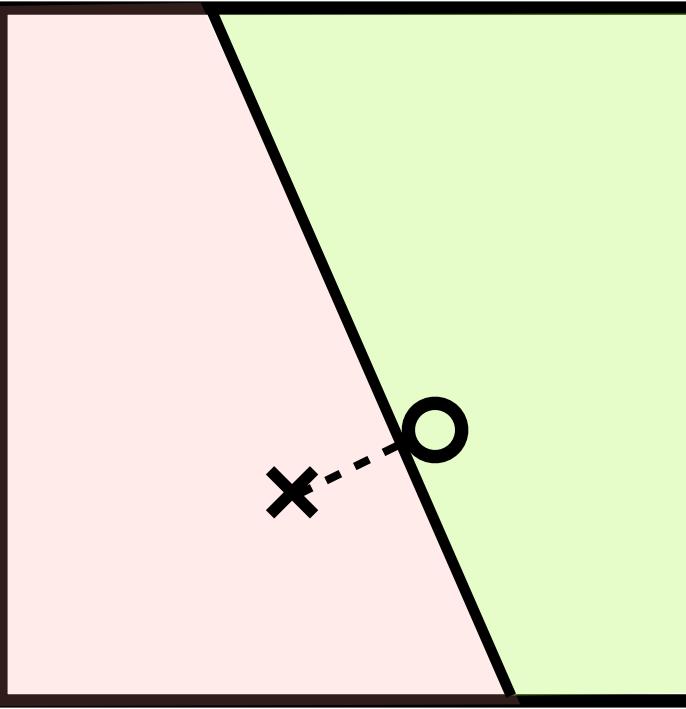
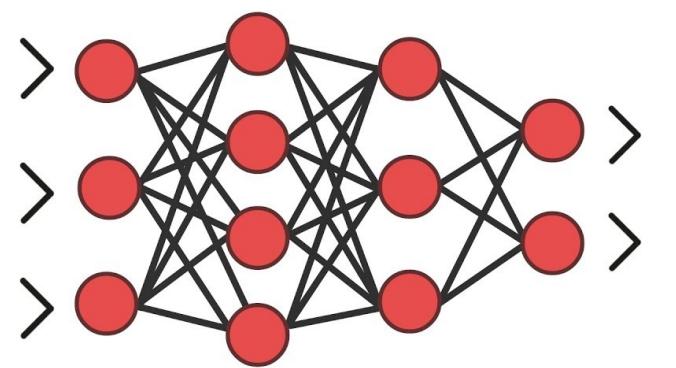
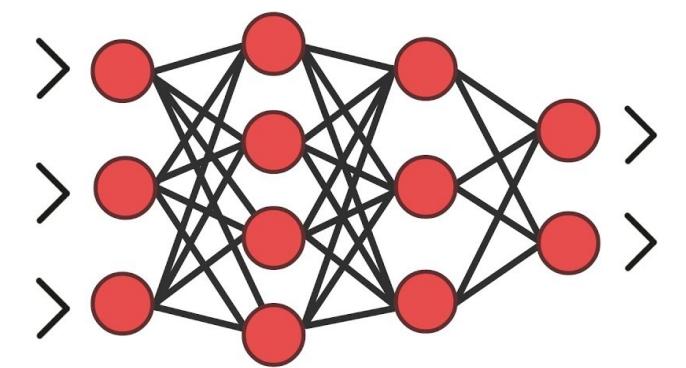
Model perturbations

Model perturbations



t_0

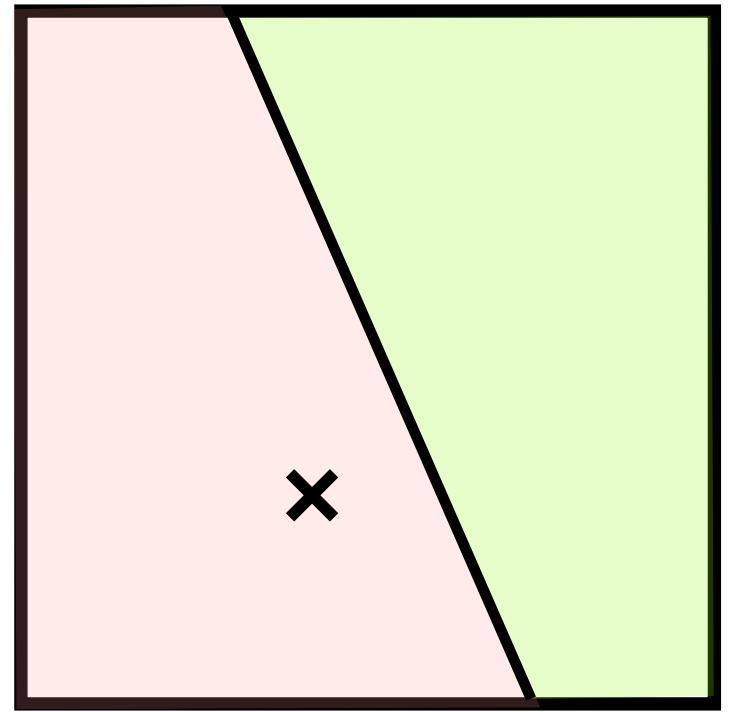
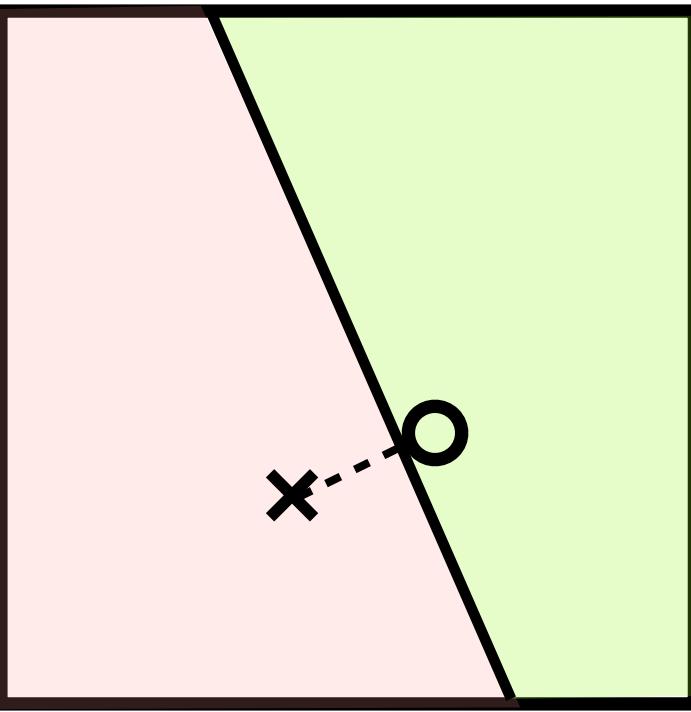
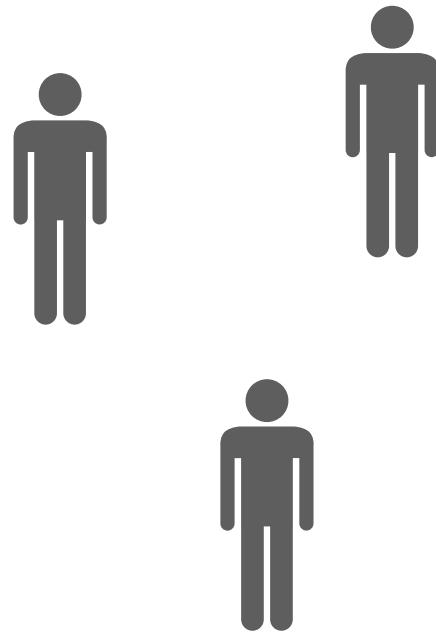
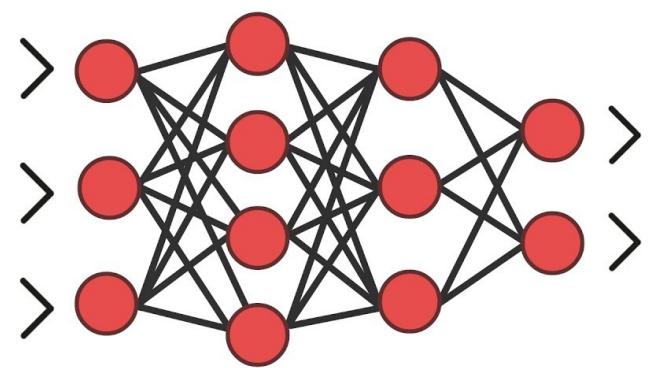
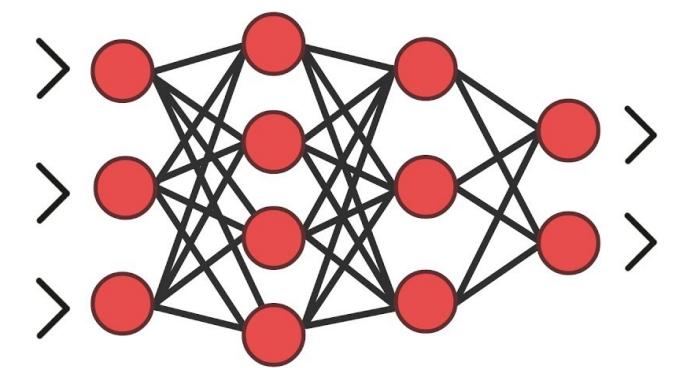
Model perturbations



t_0

t_1

Model perturbations

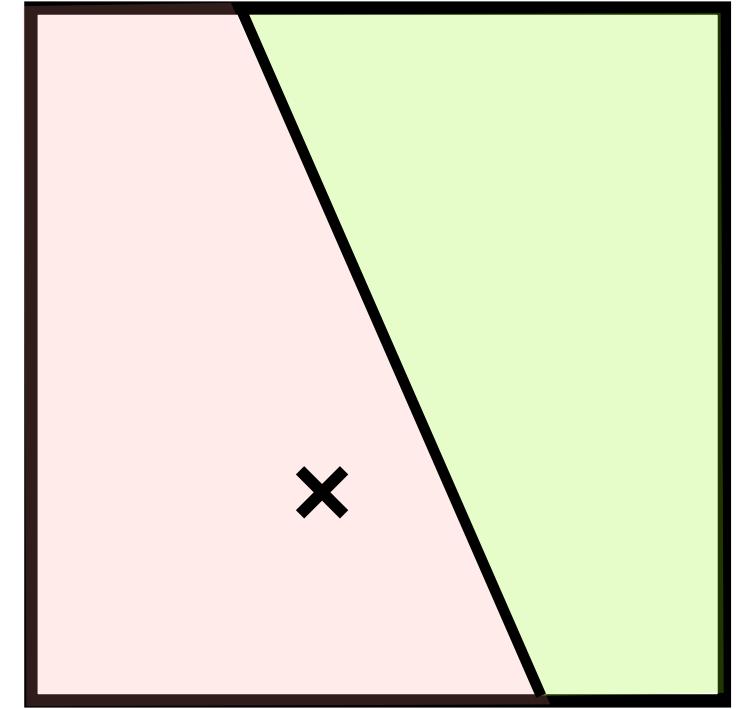
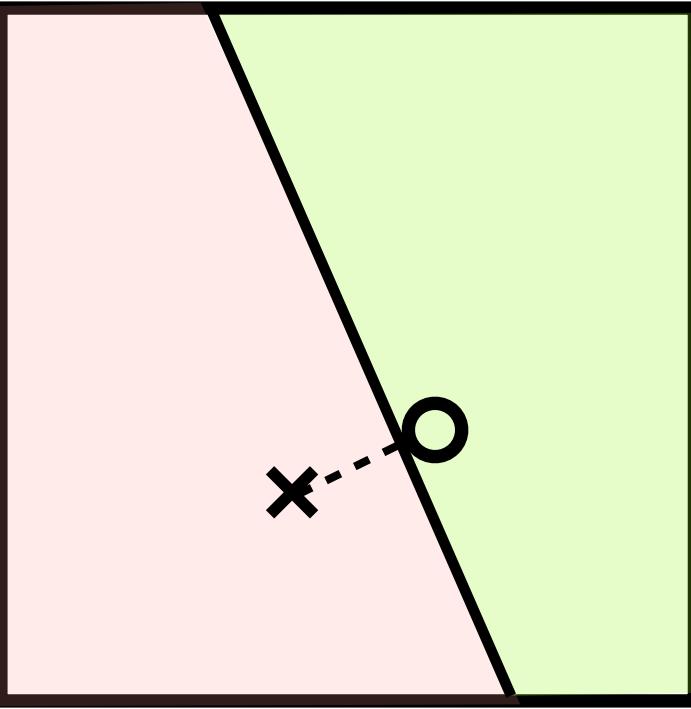
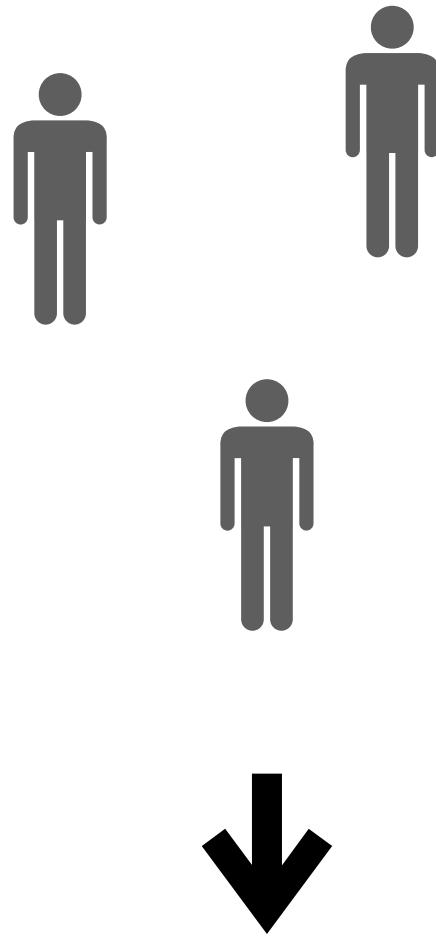
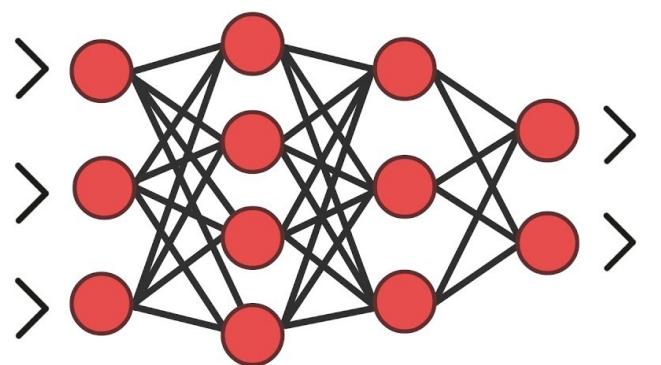
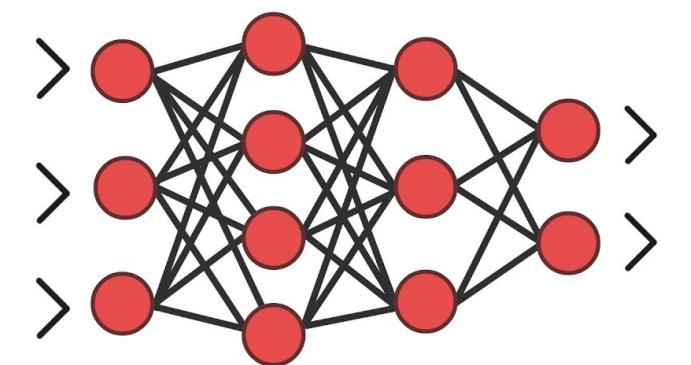
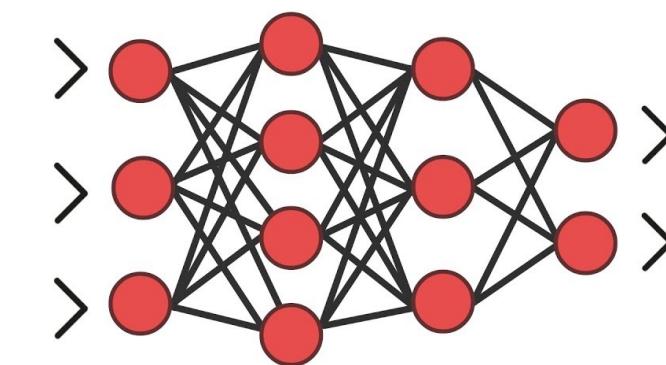


t_0

t_1

t_n

Model perturbations

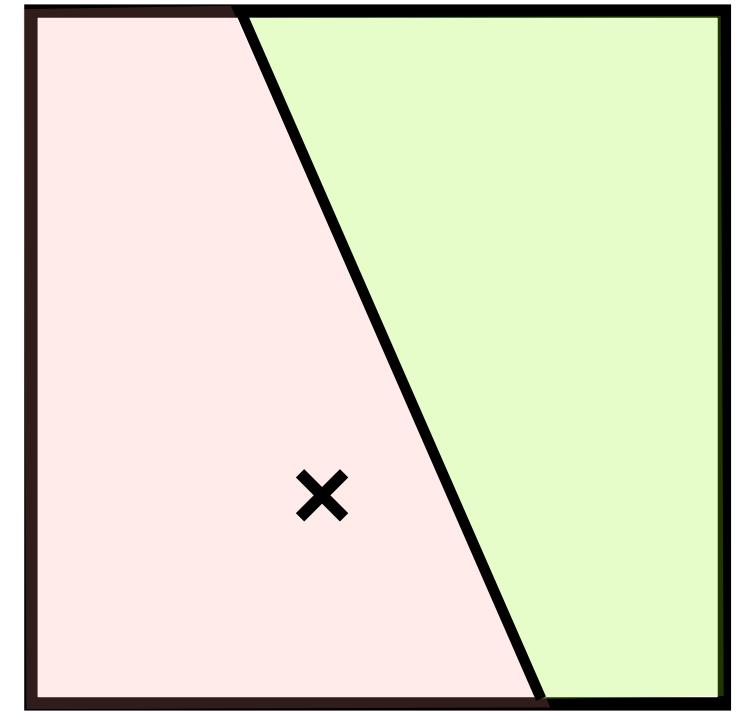
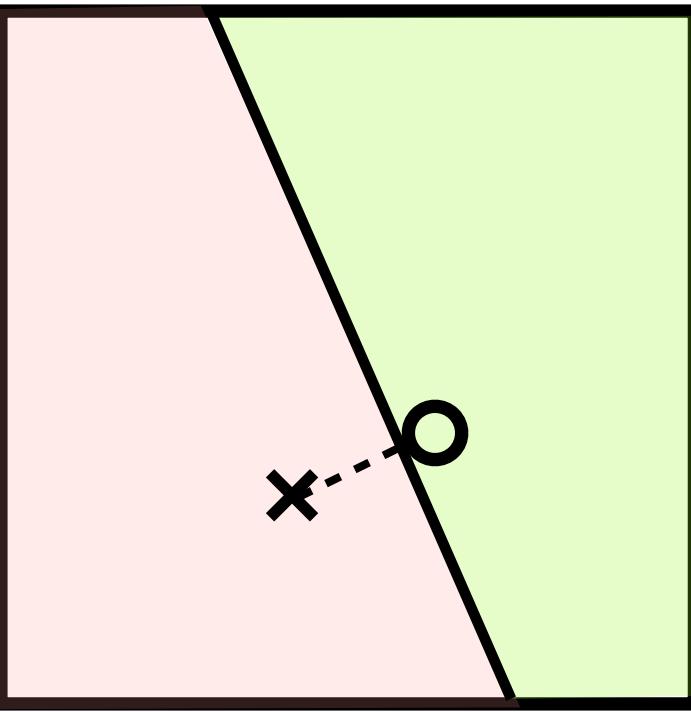
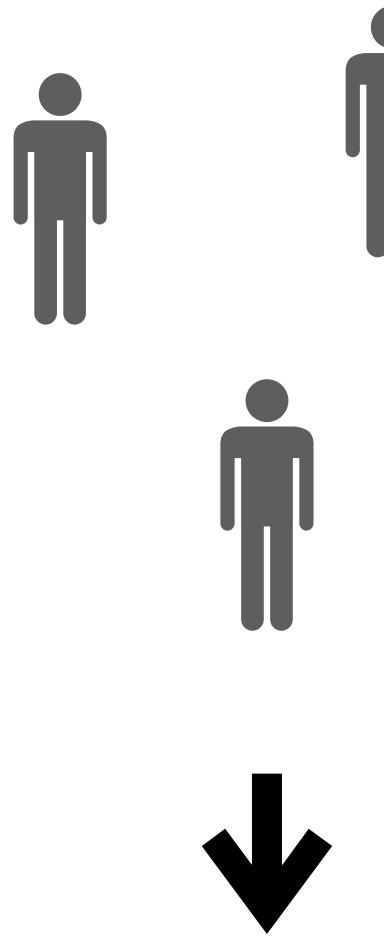
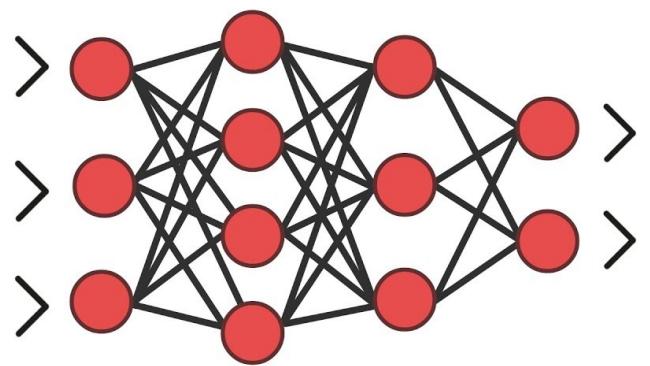
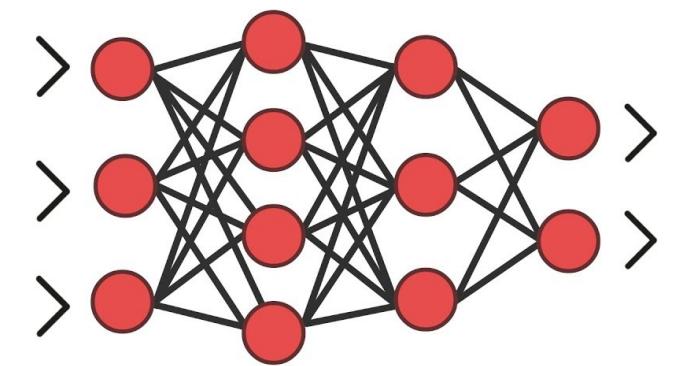
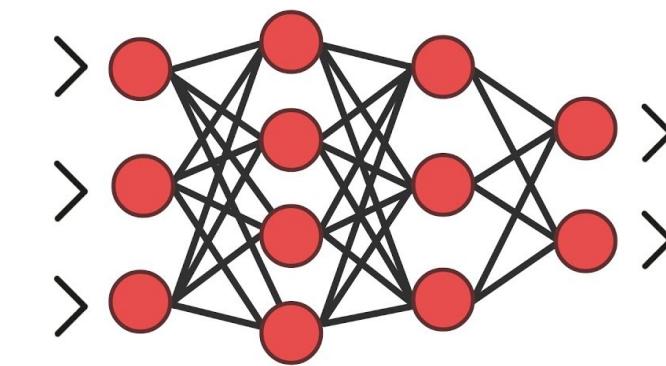
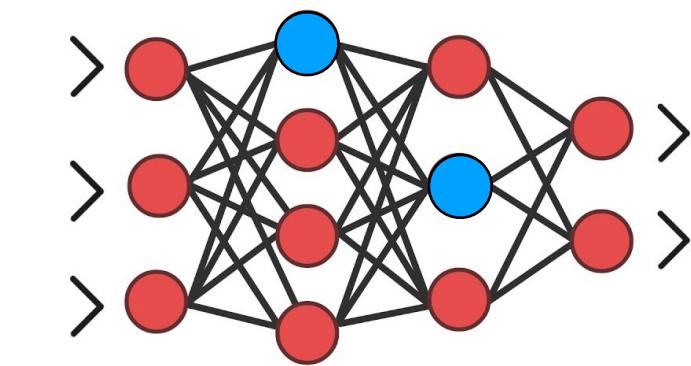


t_0

t_1

t_n

Model perturbations



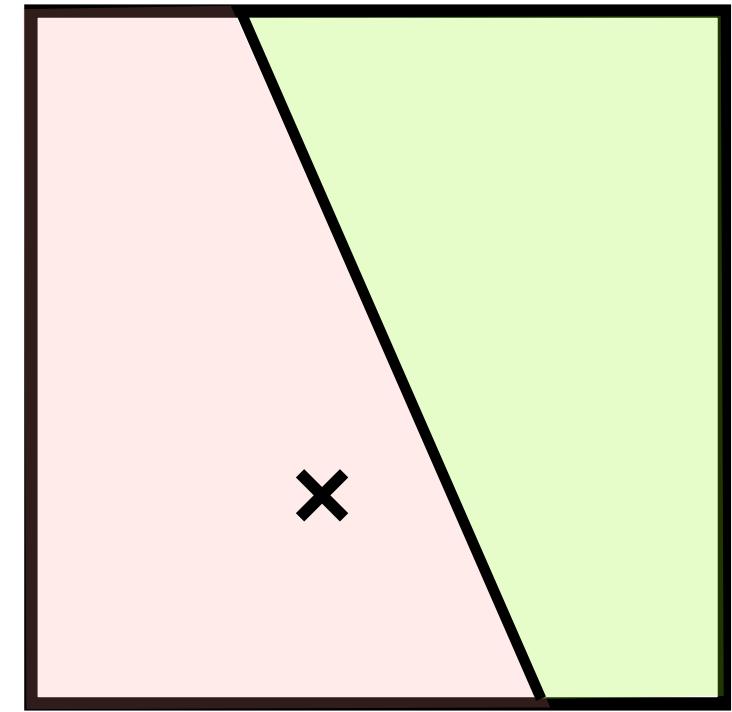
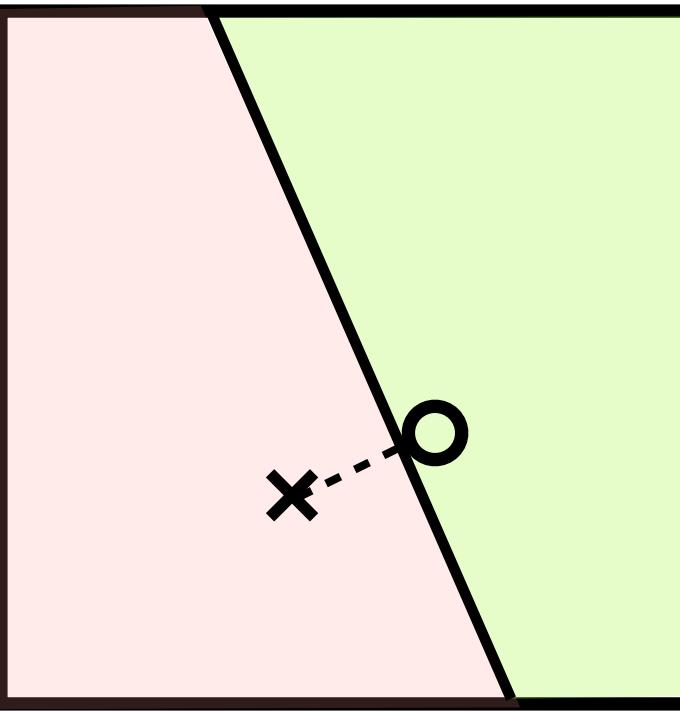
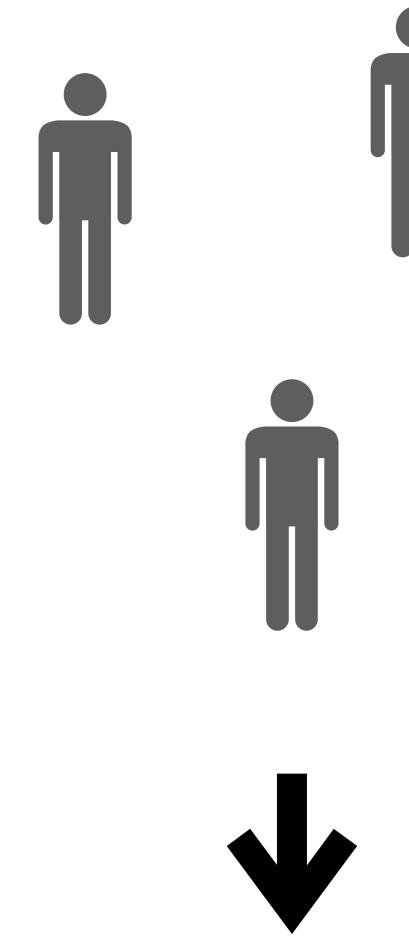
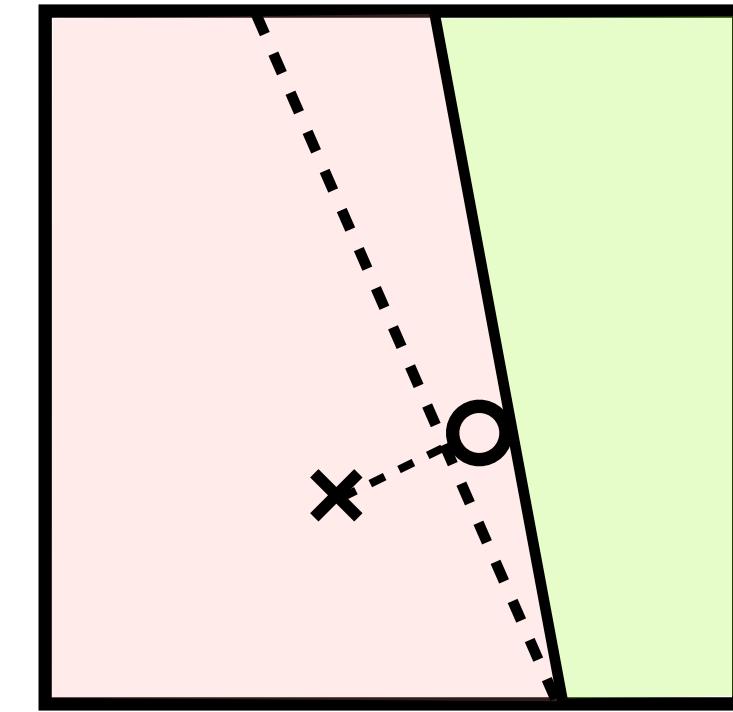
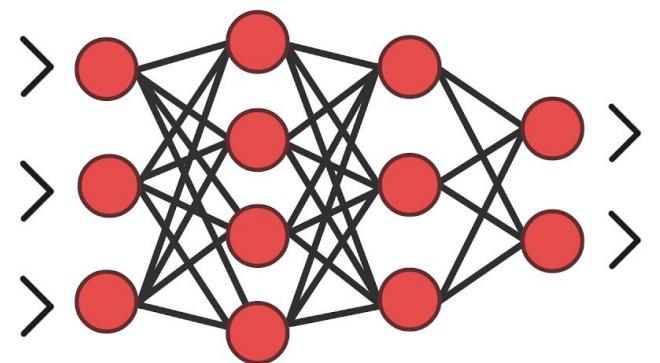
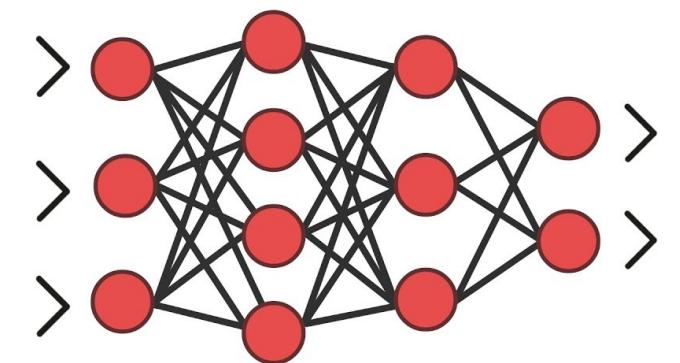
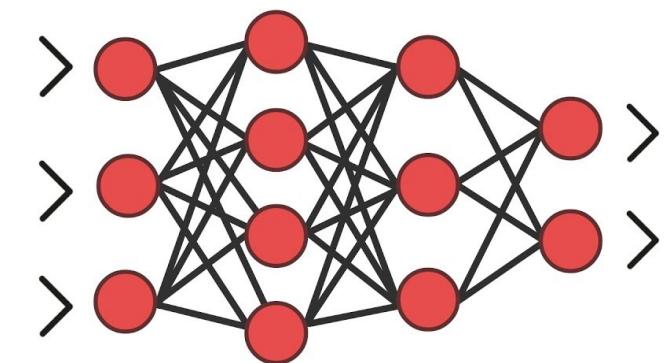
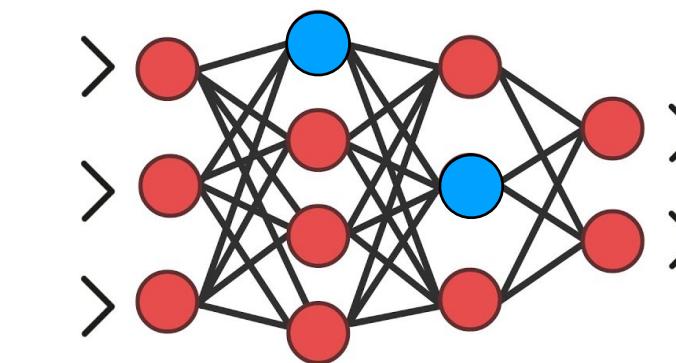
t_0

t_1

t_n

t_{n+1}

Model perturbations



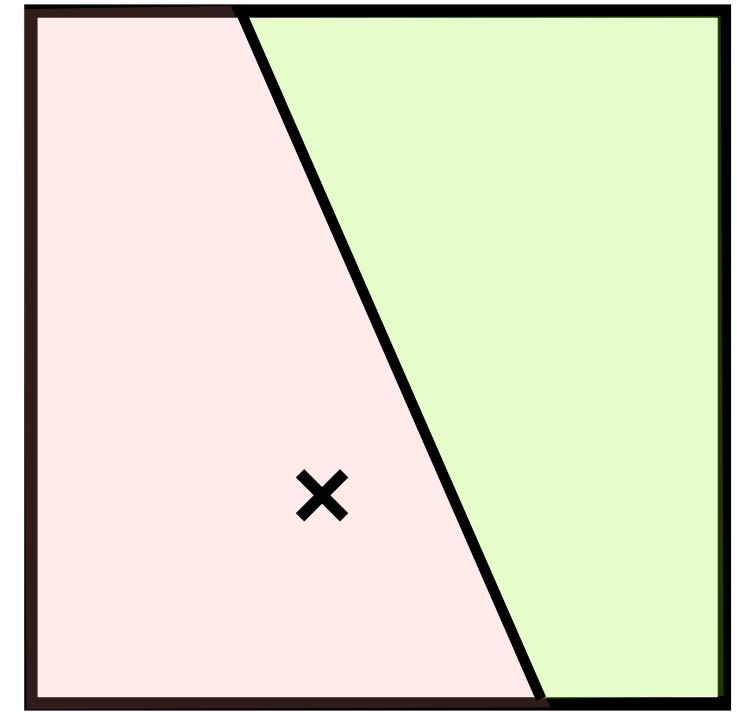
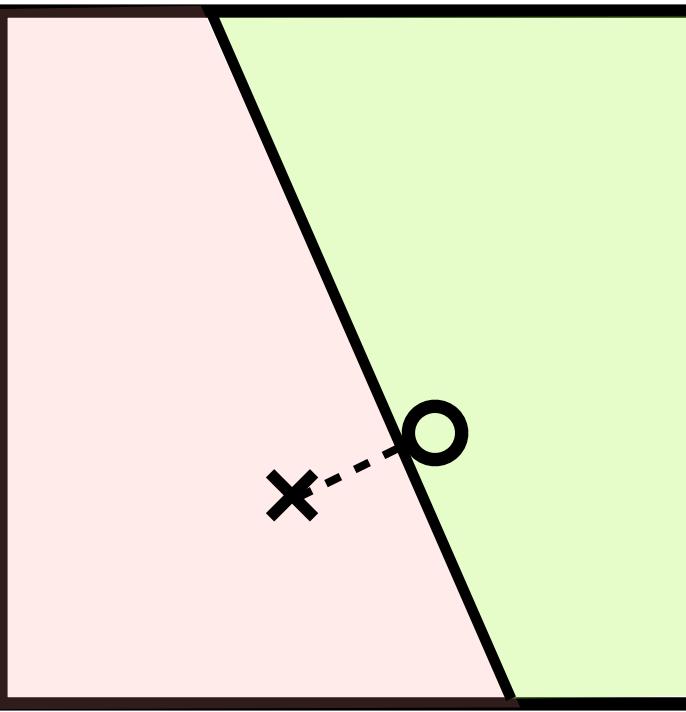
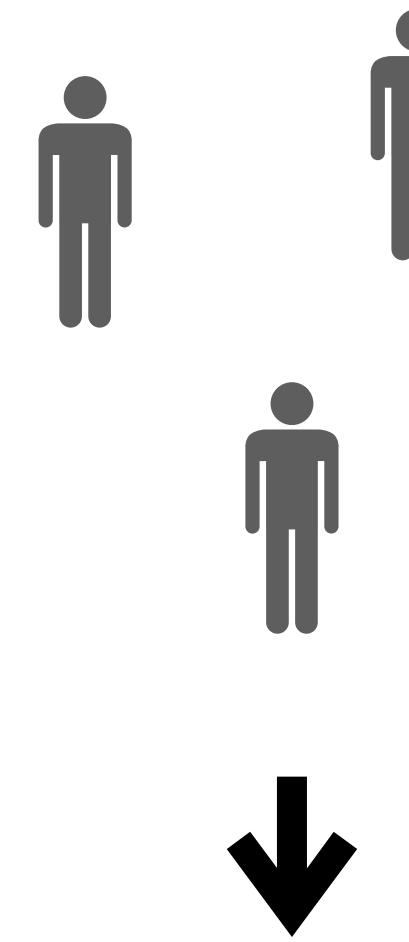
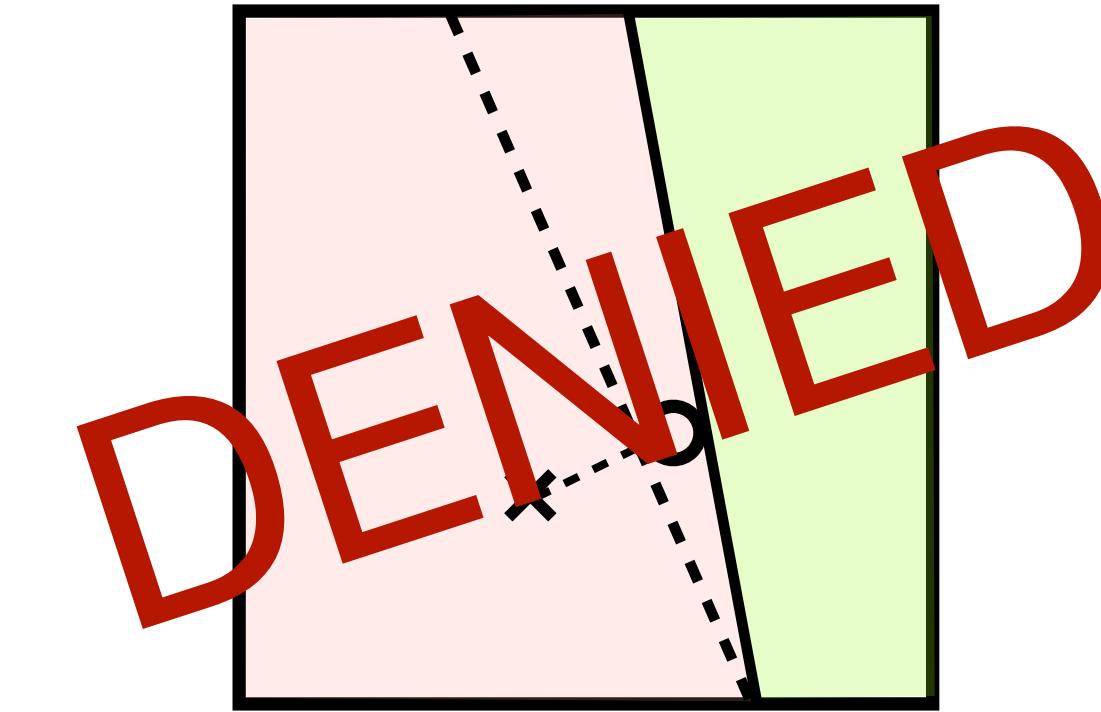
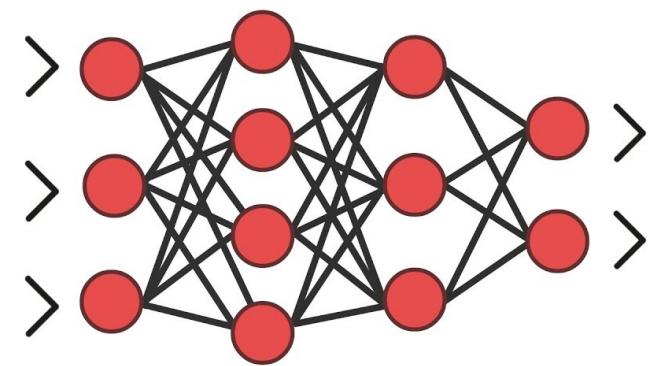
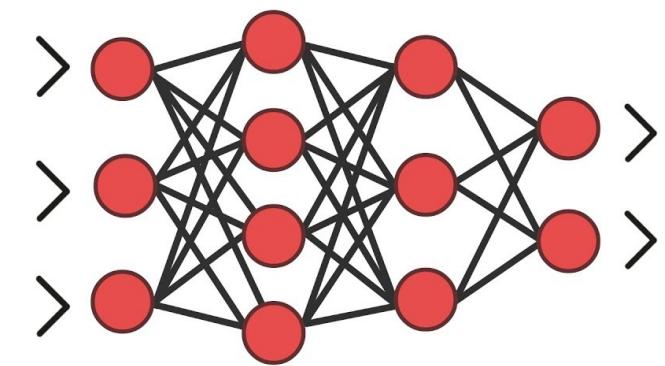
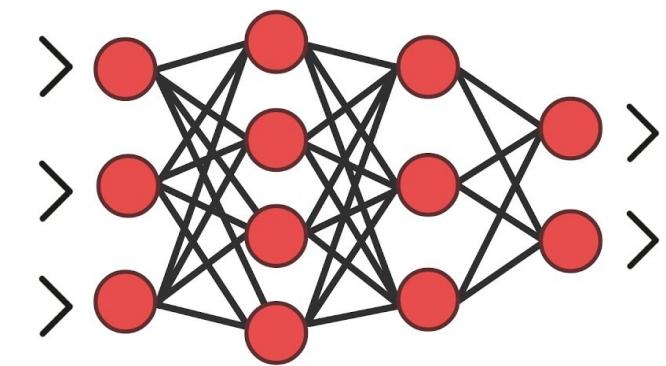
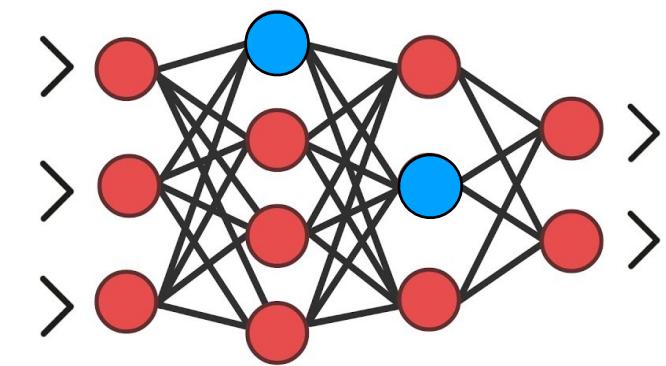
t_0

t_1

t_n

t_{n+1}

Model perturbations



t_0

t_1

t_n

t_{n+1}

Implications

Model shifts may occur as a result of data shifts

Implications

Model shifts may occur as a result of data shifts

Dilemma

Implications

Model shifts may occur as a result of data shifts

Dilemma

- **Trust** the old CX, although possibly contradicted by new data

Implications

Model shifts may occur as a result of data shifts

Dilemma

- **Trust** the old CX, although possibly contradicted by new data
- **Trash** the old CX, possibly upsetting end users

Our solution

We use interval abstractions to obtain formal robustness guarantees.

Our solution

We use interval abstractions to obtain formal robustness guarantees.

A **model shift** S is a function mapping an DNN into another one s.t.

- the two DNNs have same topology and,
- their differences (in parameter space) are bounded.

Our solution

We use interval abstractions to obtain formal robustness guarantees.

A **model shift** S is a function mapping an DNN into another one s.t.

- the two DNNs have same topology and,
- their differences (in parameter space) are bounded.

Define set of **plausible model shifts** as:

$$\Delta = \{S \mid \|\mathcal{M} - S(\mathcal{M})\| \leq \delta\}$$

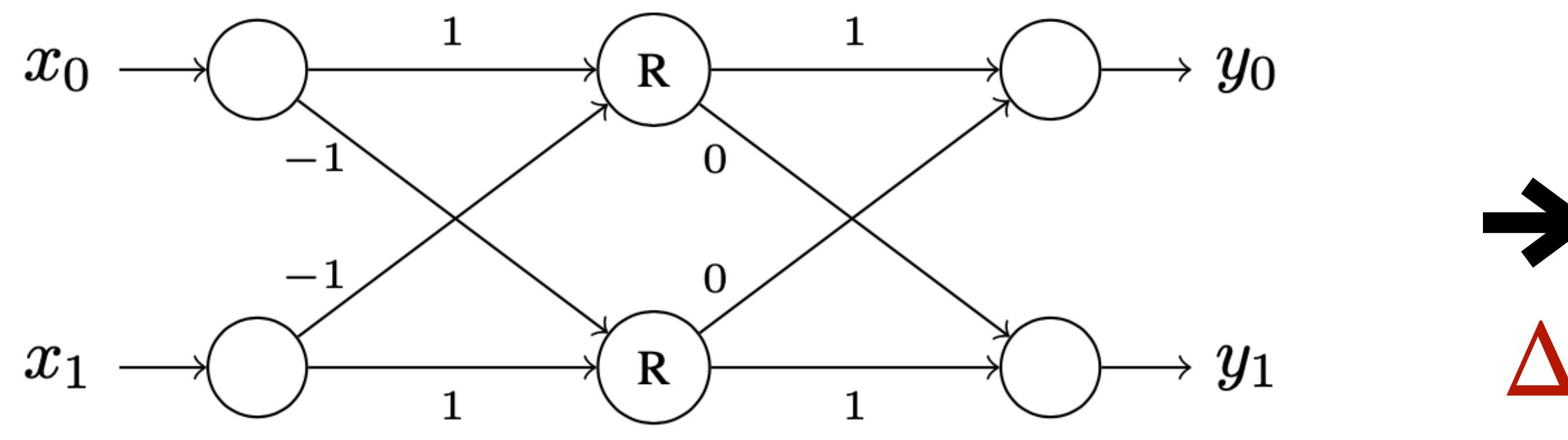
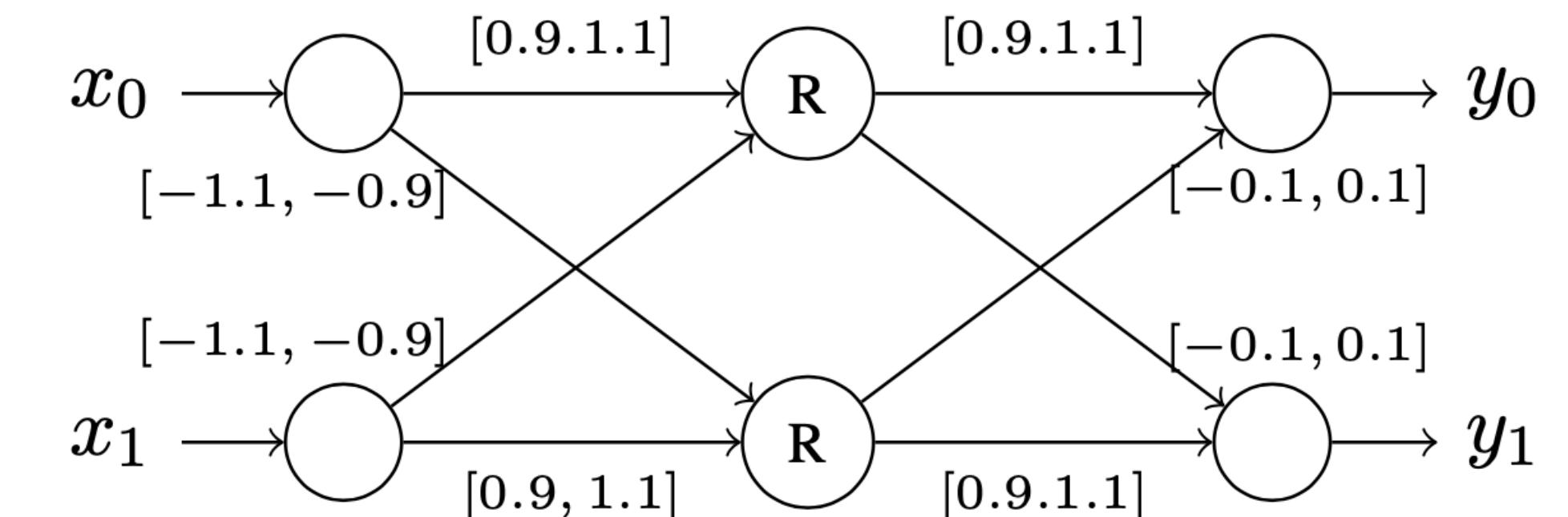
Our solution

- Plausible model shifts induce a family of DNNs...
- Need a way to reason about them concisely!

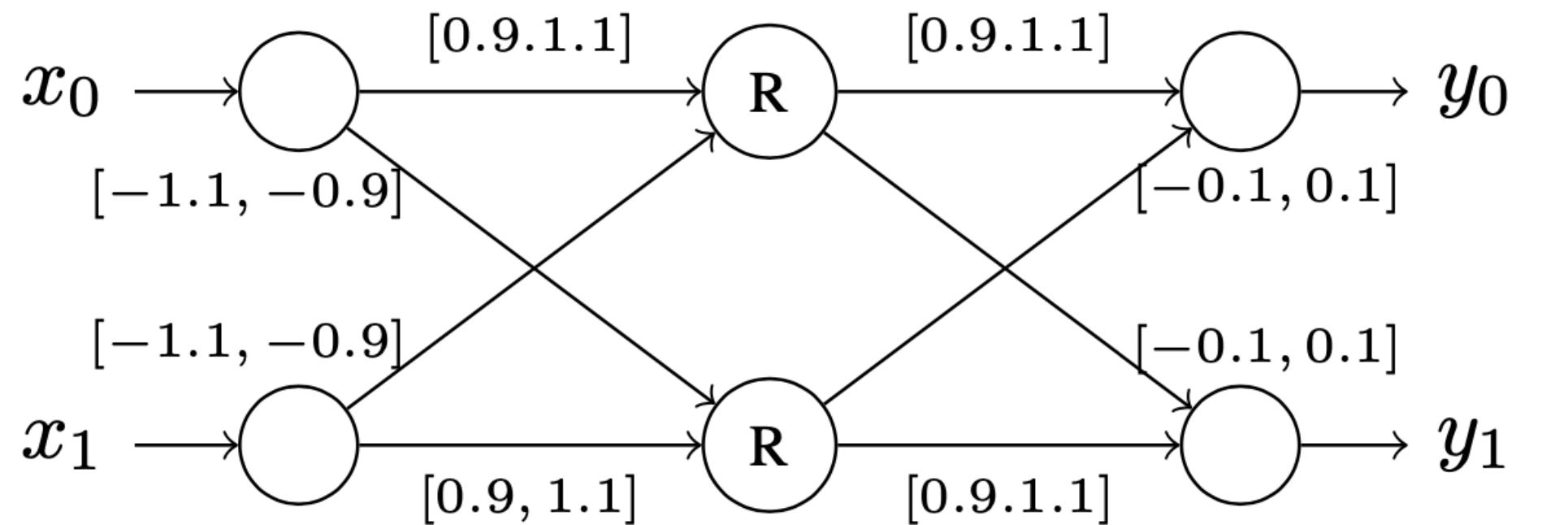
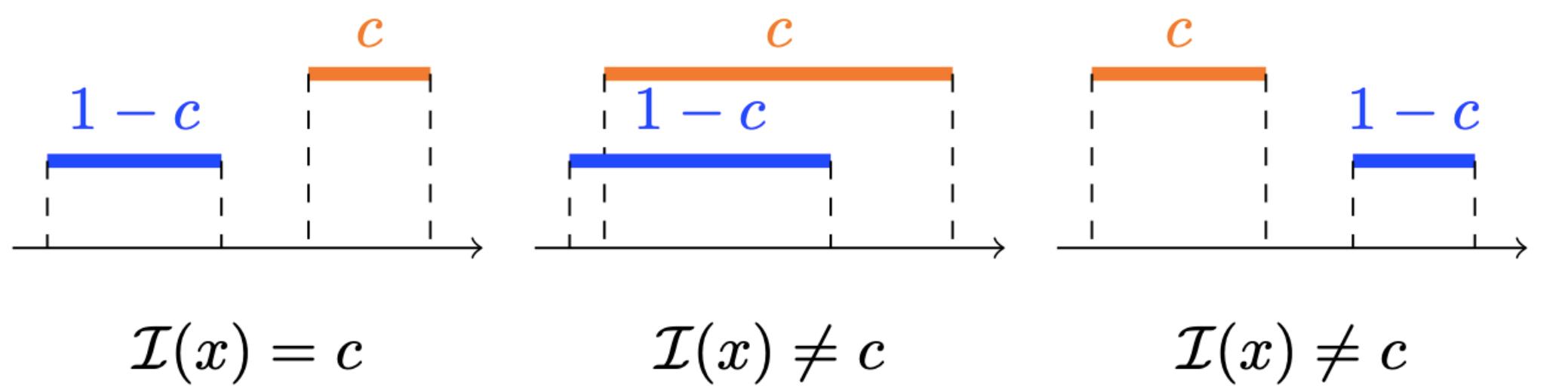
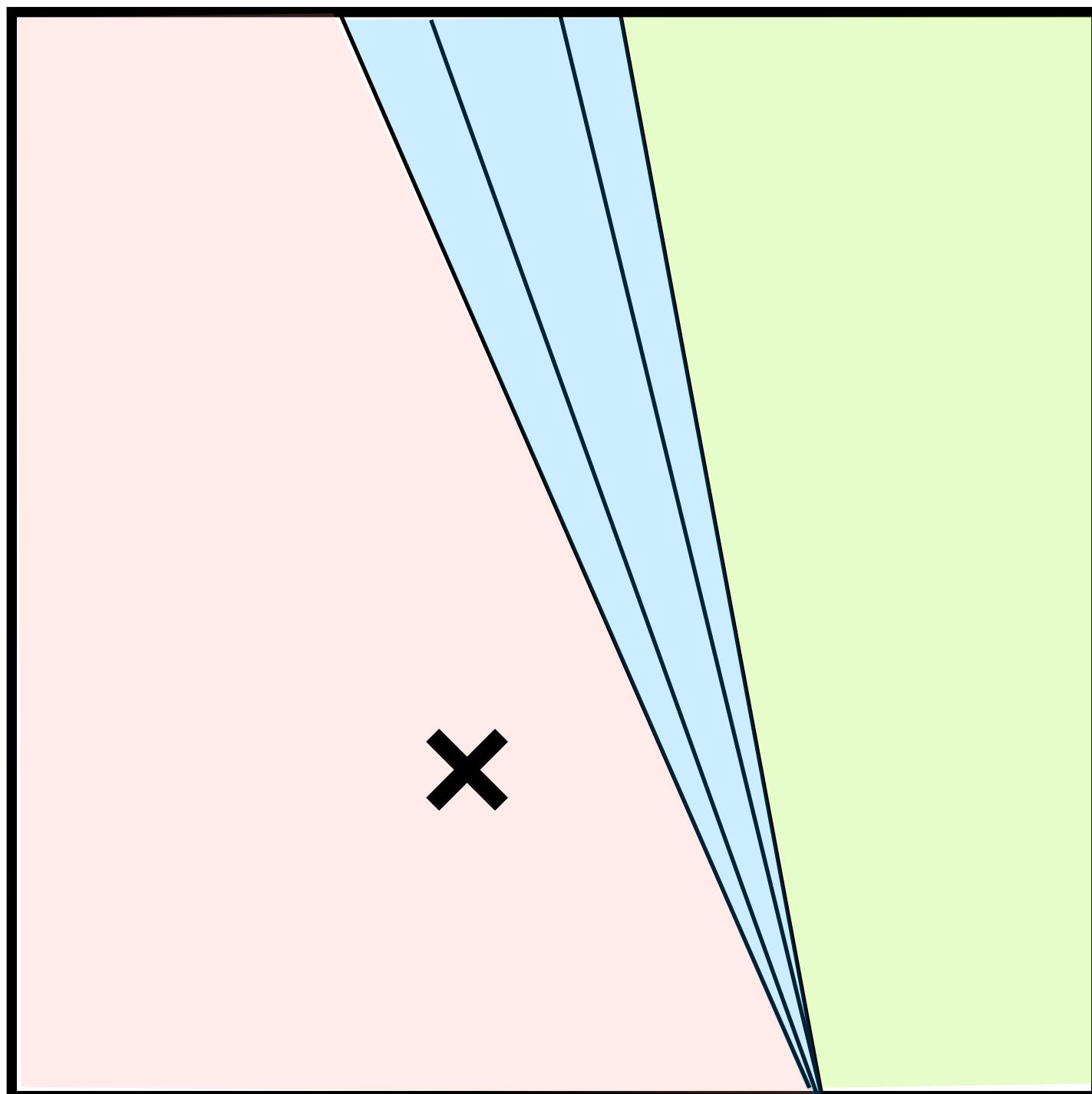
Our solution

- Plausible model shifts induce a family of DNNs...
- Need a way to reason about them concisely!

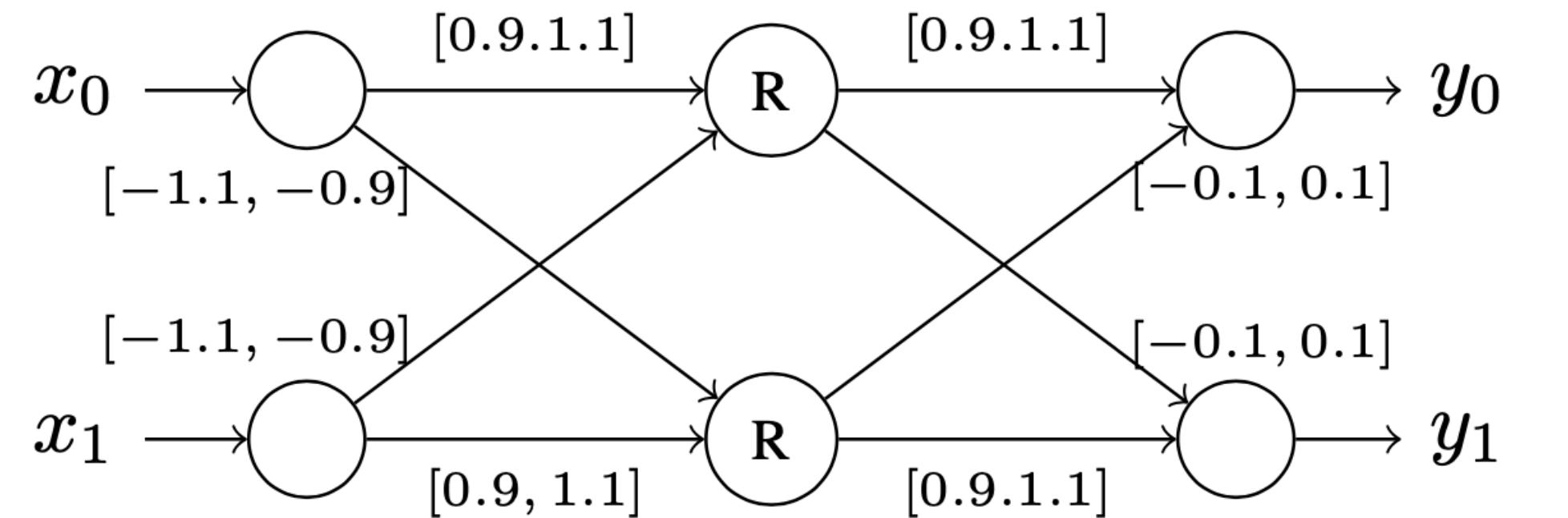
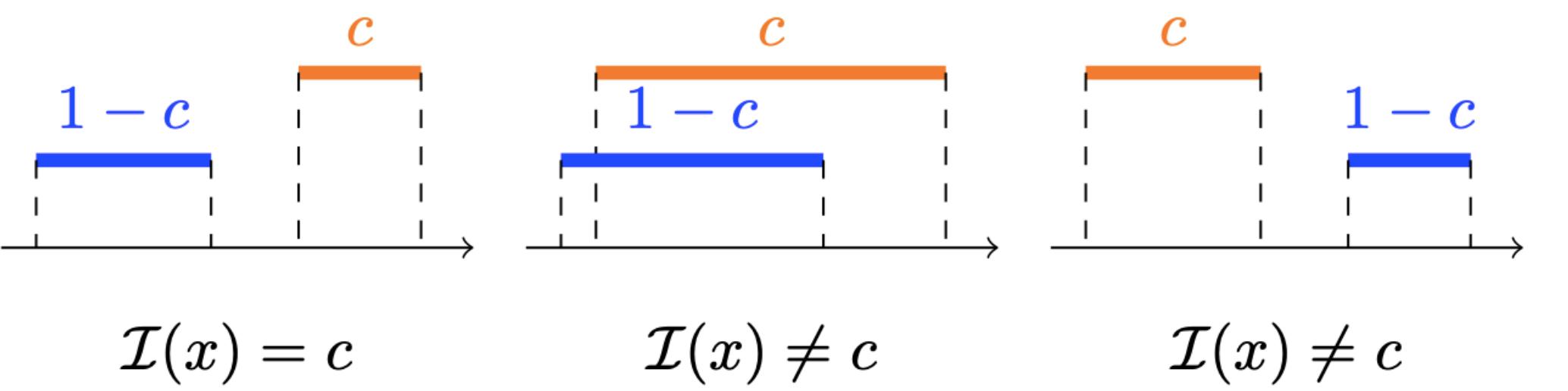
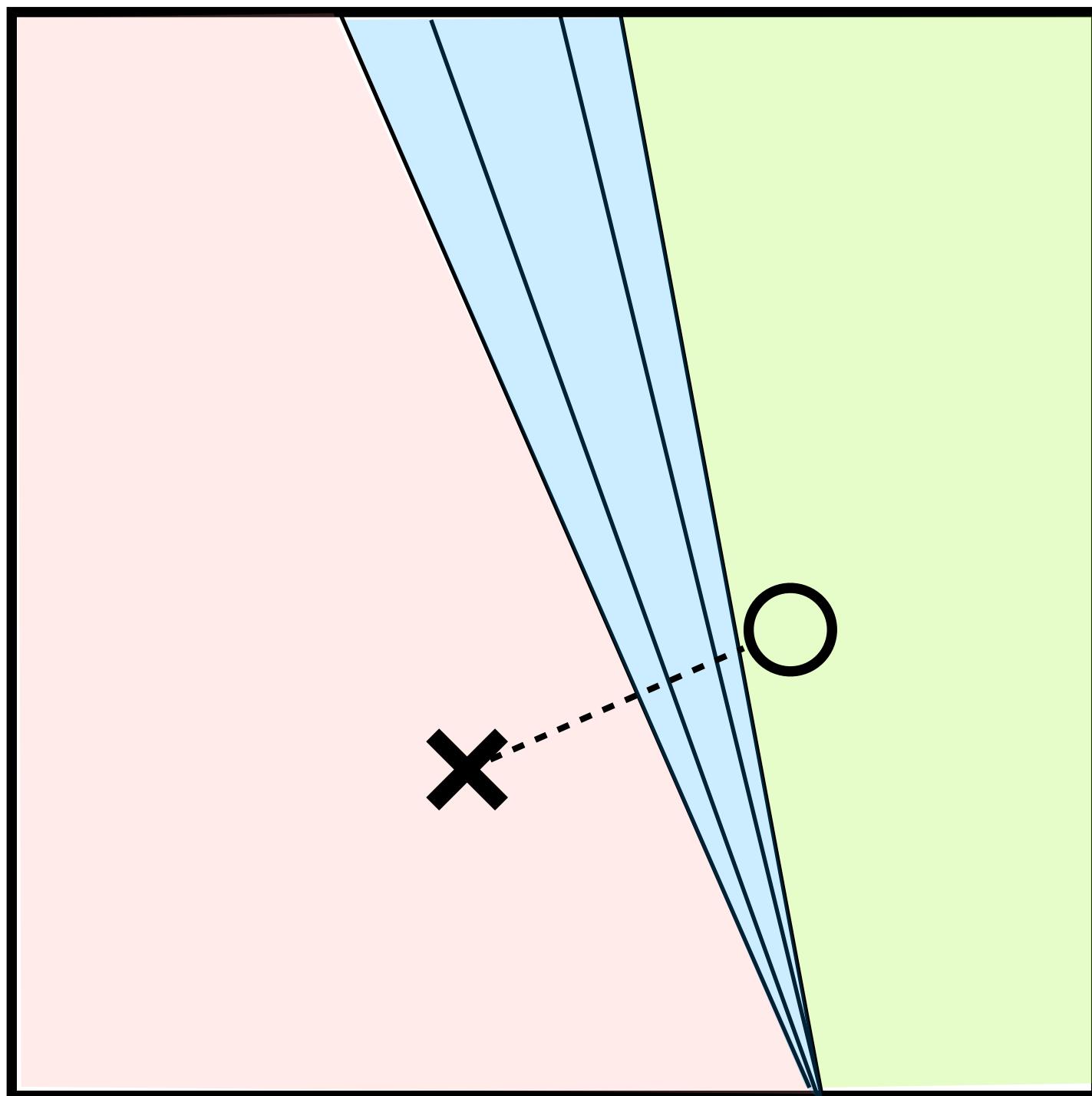
Enter the **interval neural network** \mathcal{I}



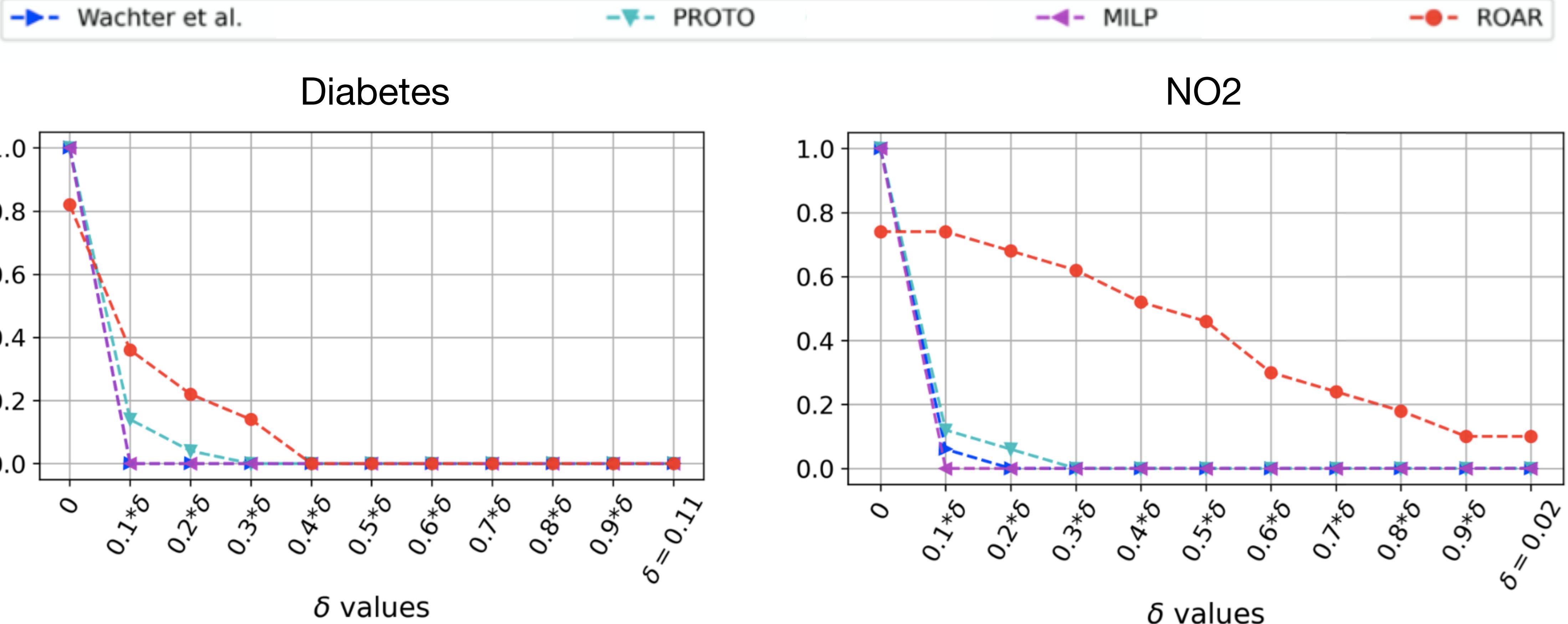
Our solution



Our solution

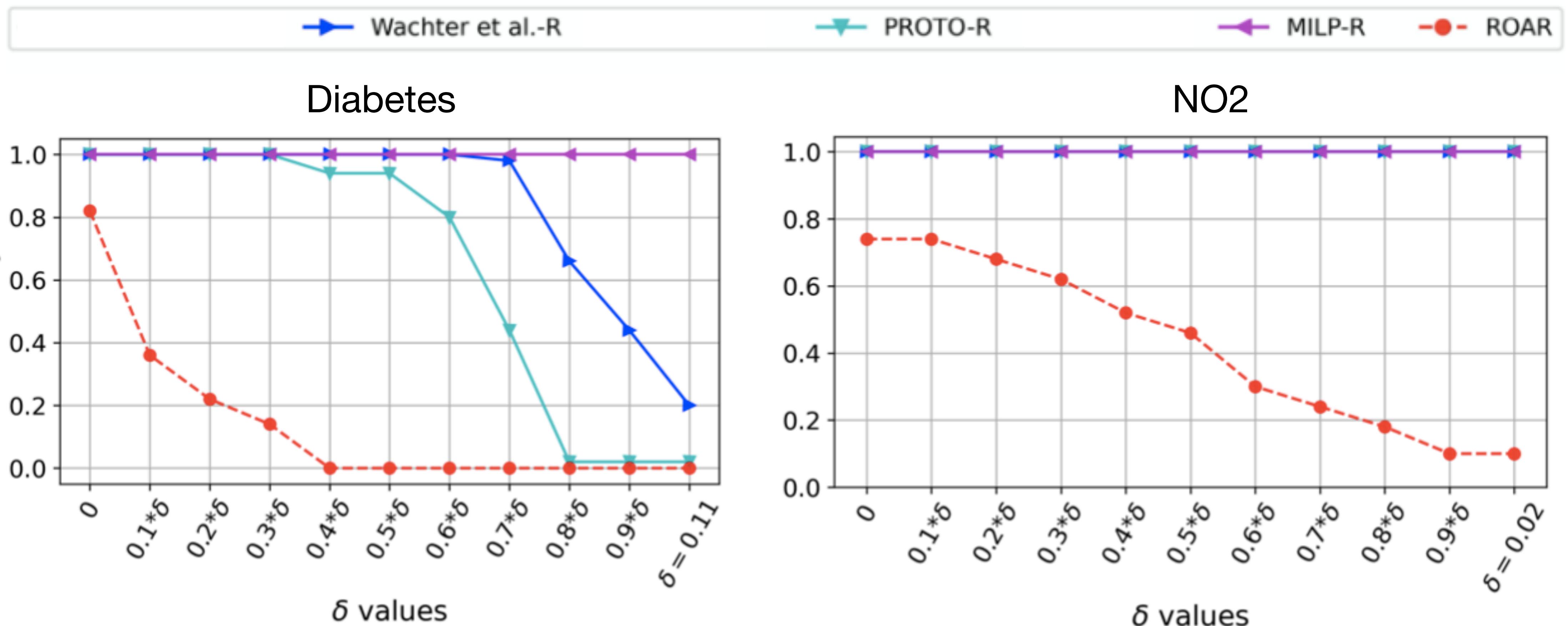


Our solution



Robustness decreases with shift magnitude - **for robust methods as well!**

Our solution



Robustness of base methods increased - **100% in some cases.**

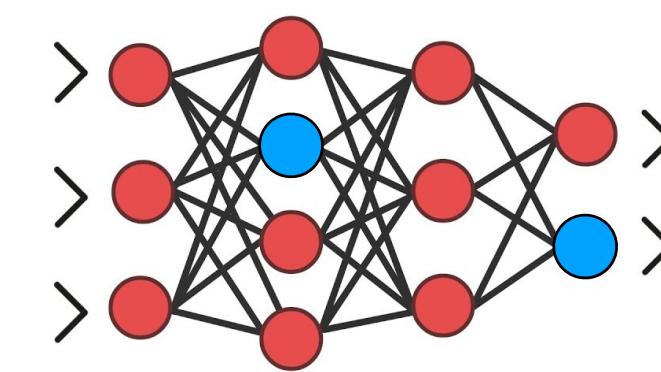
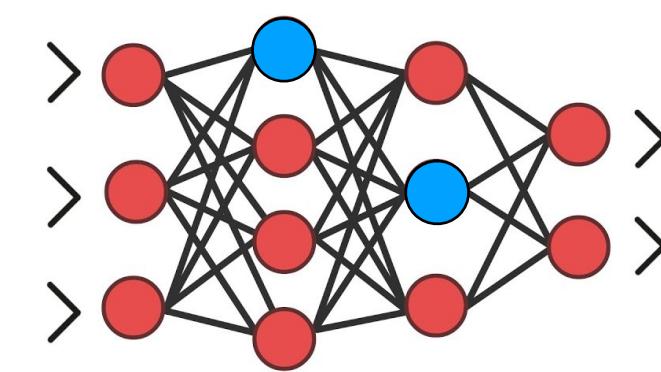
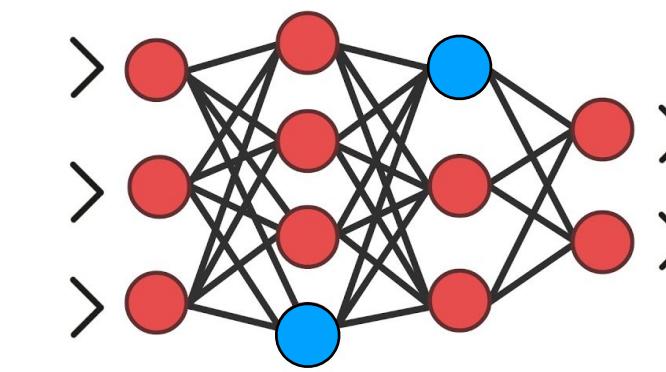
Brittle explanations ahead!

Threats

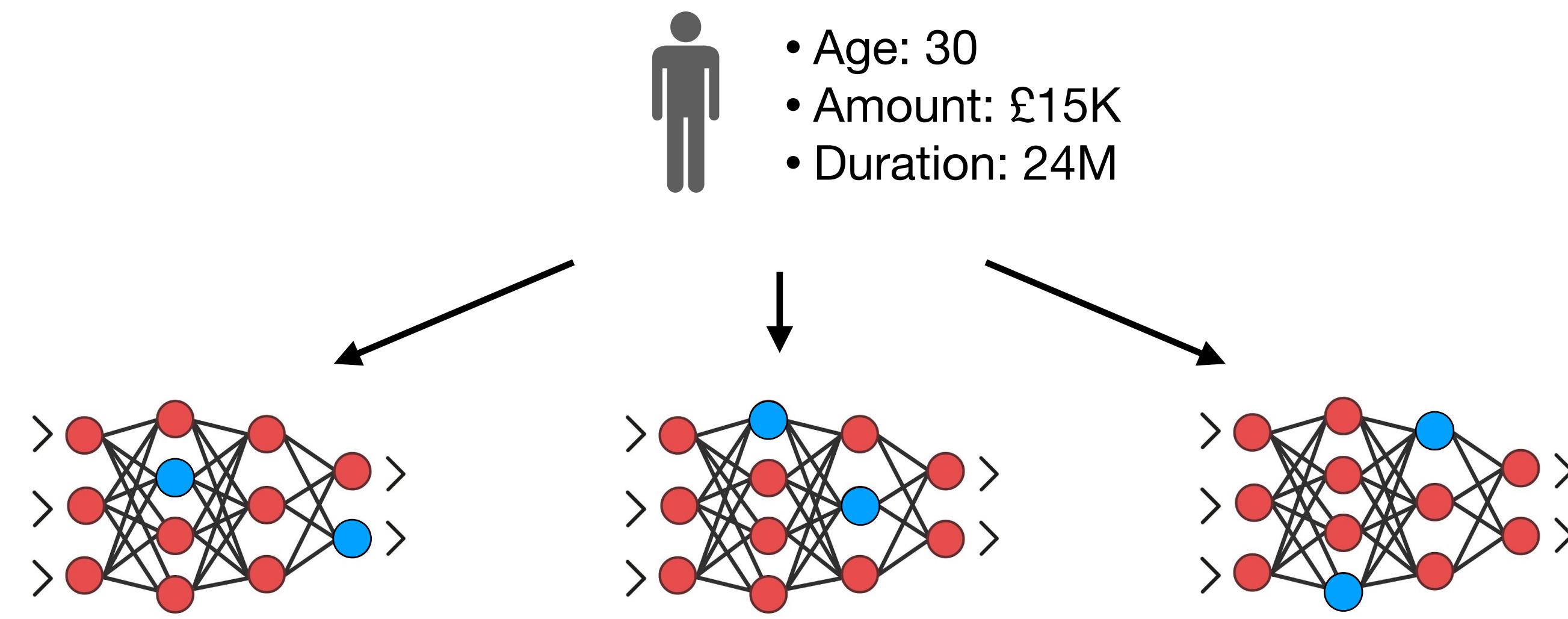
1. Model perturbations
2. **Model multiplicity**
3. Noisy execution

Model multiplicity

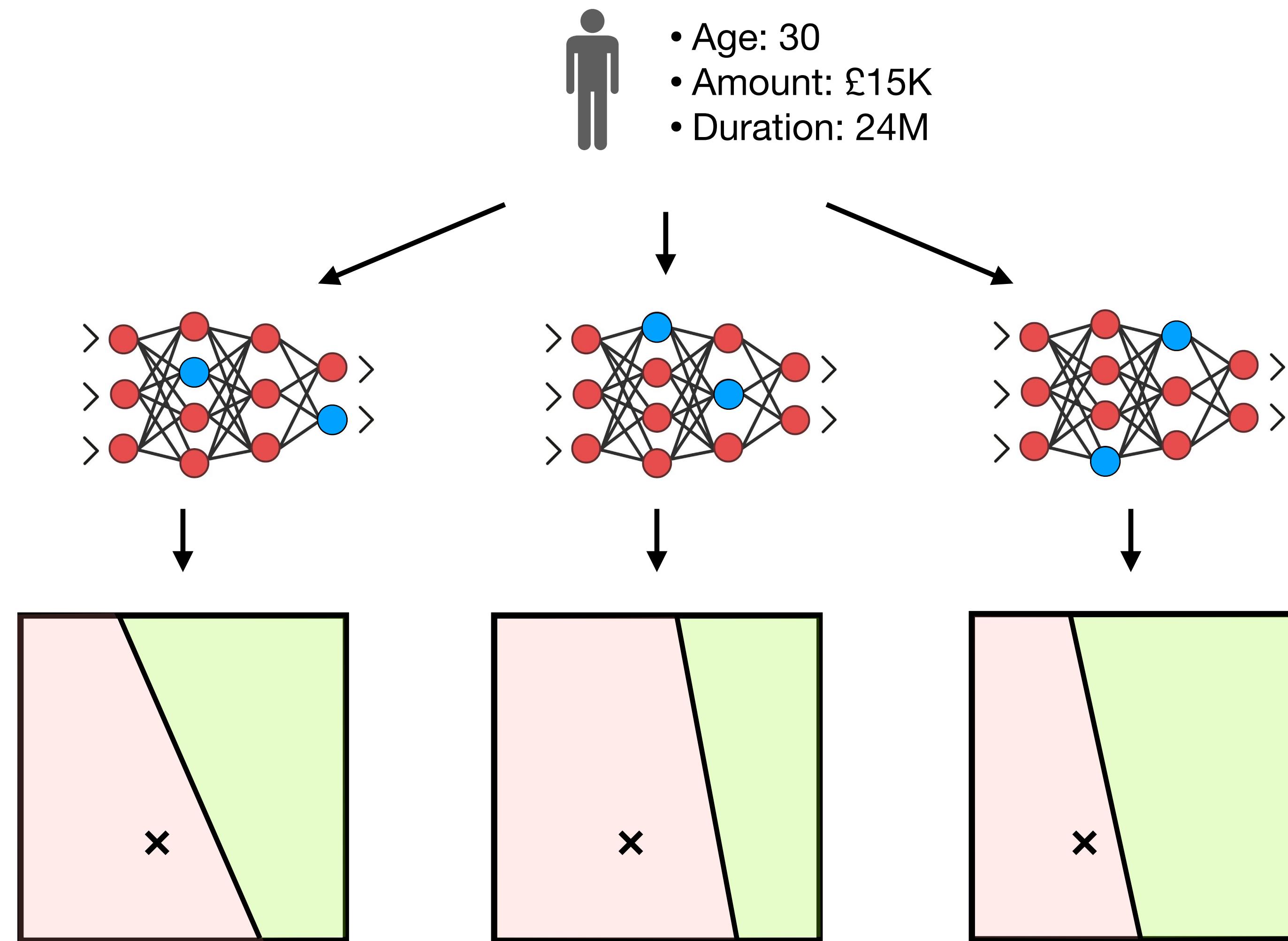
Situation where models of equal accuracy differ in the process by which they reach a given prediction



Model multiplicity



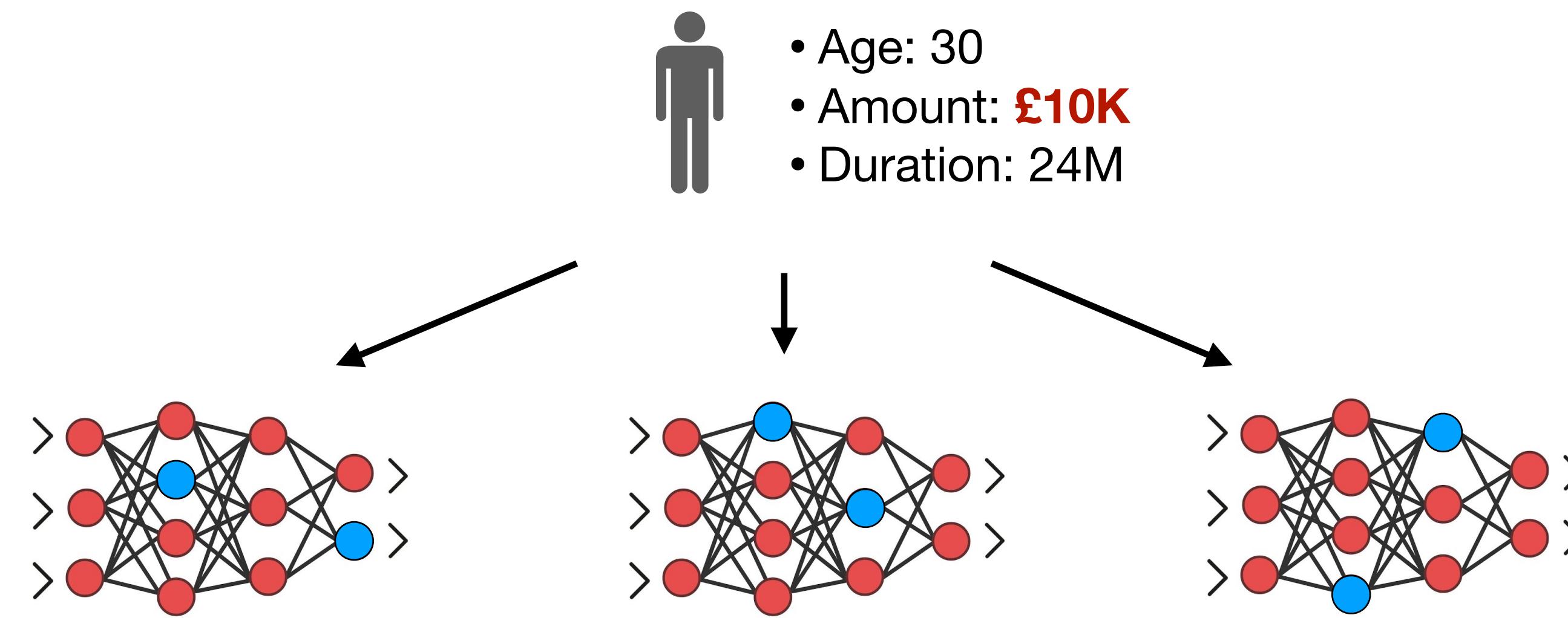
Model multiplicity



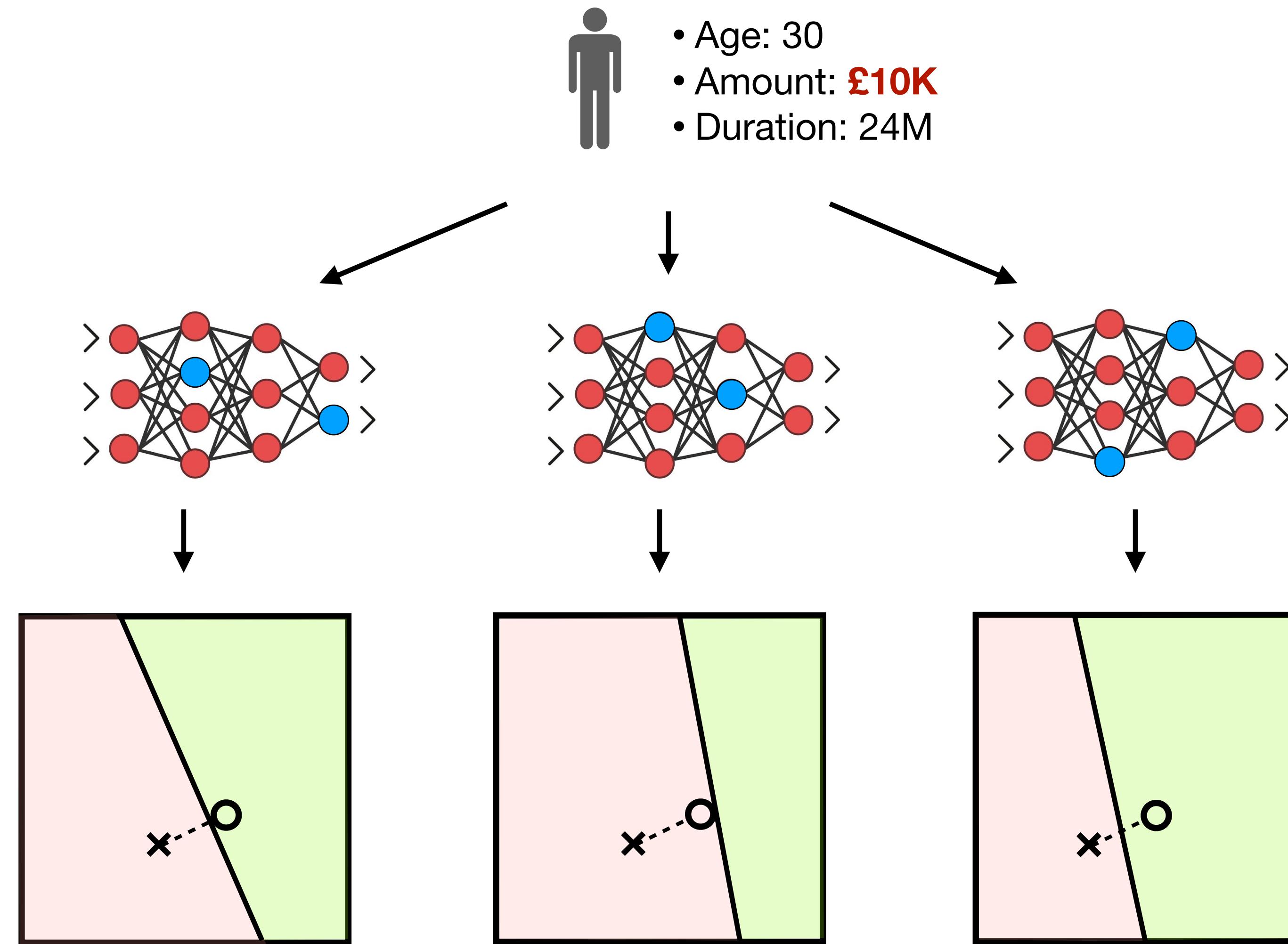
Model multiplicity

- Age: 30
- Amount: **£10K**
- Duration: 24M

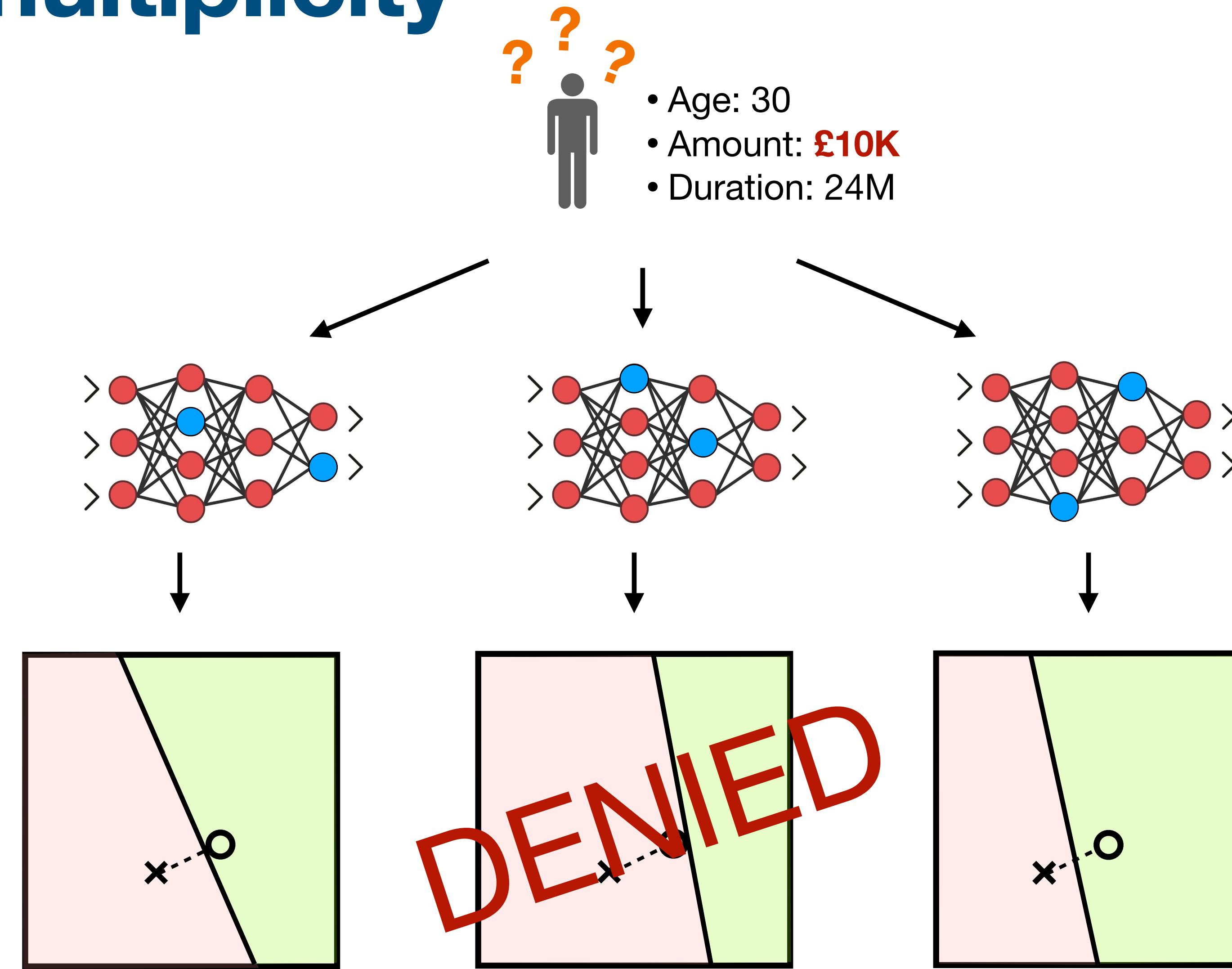
Model multiplicity



Model multiplicity

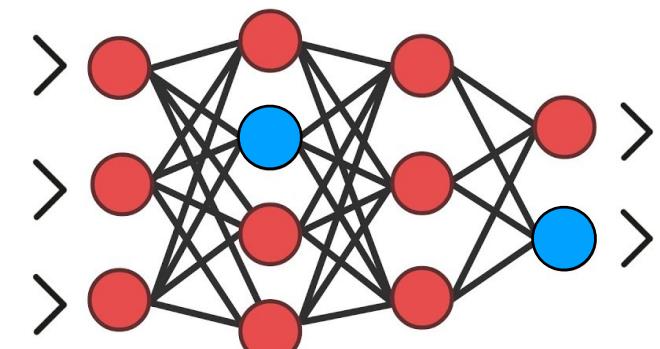


Model multiplicity

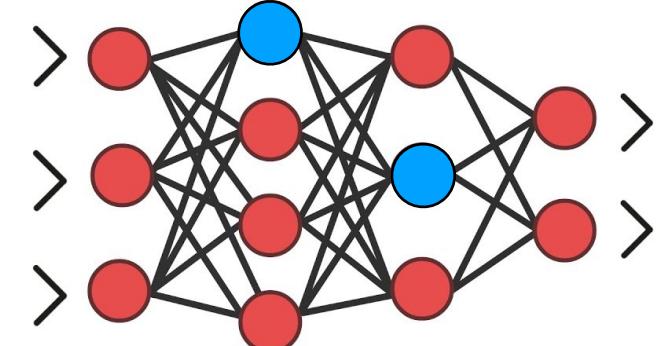


Implications

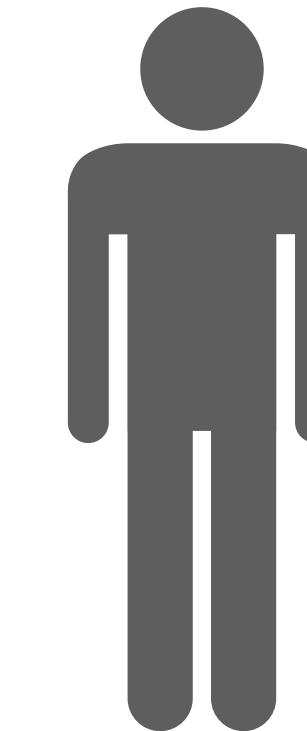
- Disagreeing models might raise concerns about the **justifiability** of CXs
- Different models might offer **better/worse recourse** options



Increase by £50



That's not enough!



Erm, I'll leave you
alone now...

Our solution

We use tools from **relational verification**.

- Introduce a **novel product construction** tailored for the problem.
- Use this construction to **study the complexity** of generating robust CFXs under model multiplicity.
- Propose an approach to **generate robust CFXs** via MILP.

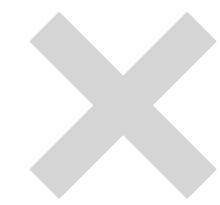
Sequential products

```
i:=0;  
while (i<N) do  
  j:=N-1;  
  while (j>i) do  
    if (a[j-1]>a[j]) then  
      swap(a,j,j-1);  
    j--  
  i++
```

Program c

Sequential products

```
i:=0;  
while (i<N) do  
  j:=N-1;  
  while (j>i) do  
    if (a[j-1]>a[j]) then  
      swap(a,j,j-1);  
    j--  
  i++
```



Program c

```
i:=0;  
while (i<N) do  
  j:=N-1;  
  while (j>i) do  
    if (a[j-1]>a[j]) then  
      swap(a,j,j-1);  
    j--  
  i++
```


Program c'

```
i:=0; i':=0;  
while (i<N) do  
  j:=N-1; j':=N-1;  
  while (j>i) do  
    if (a[j-1]>a[j]) then  
      swap(a,j,j-1);  
    if (a'[j'-1]>a'[j']) then  
      swap(a',j',j'-1);  
    j--; j'--  
  i++; i'++
```

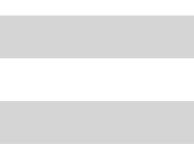
Product program P

Sequential products

```
i:=0;  
while (i<N) do  
  j:=N-1;  
  while (j>i) do  
    if (a[j-1]>a[j]) then  
      swap(a,j,j-1);  
    j--  
  i++
```

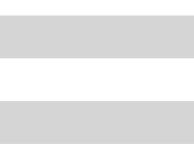

Program c

```
i:=0;  
while (i<N) do  
  j:=N-1;  
  while (j>i) do  
    if (a[j-1]>a[j]) then  
      swap(a,j,j-1);  
    j--  
  i++
```

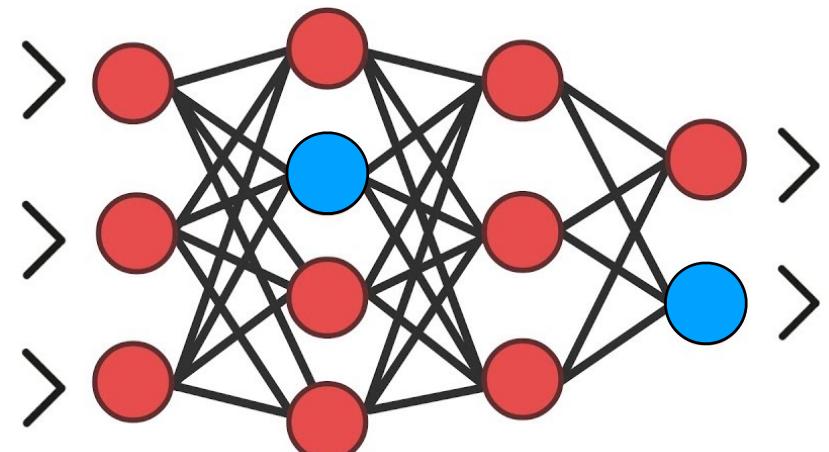
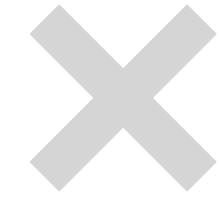
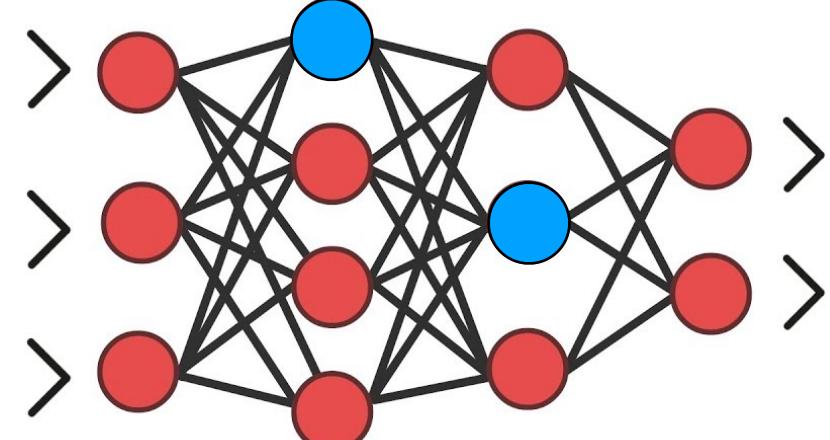
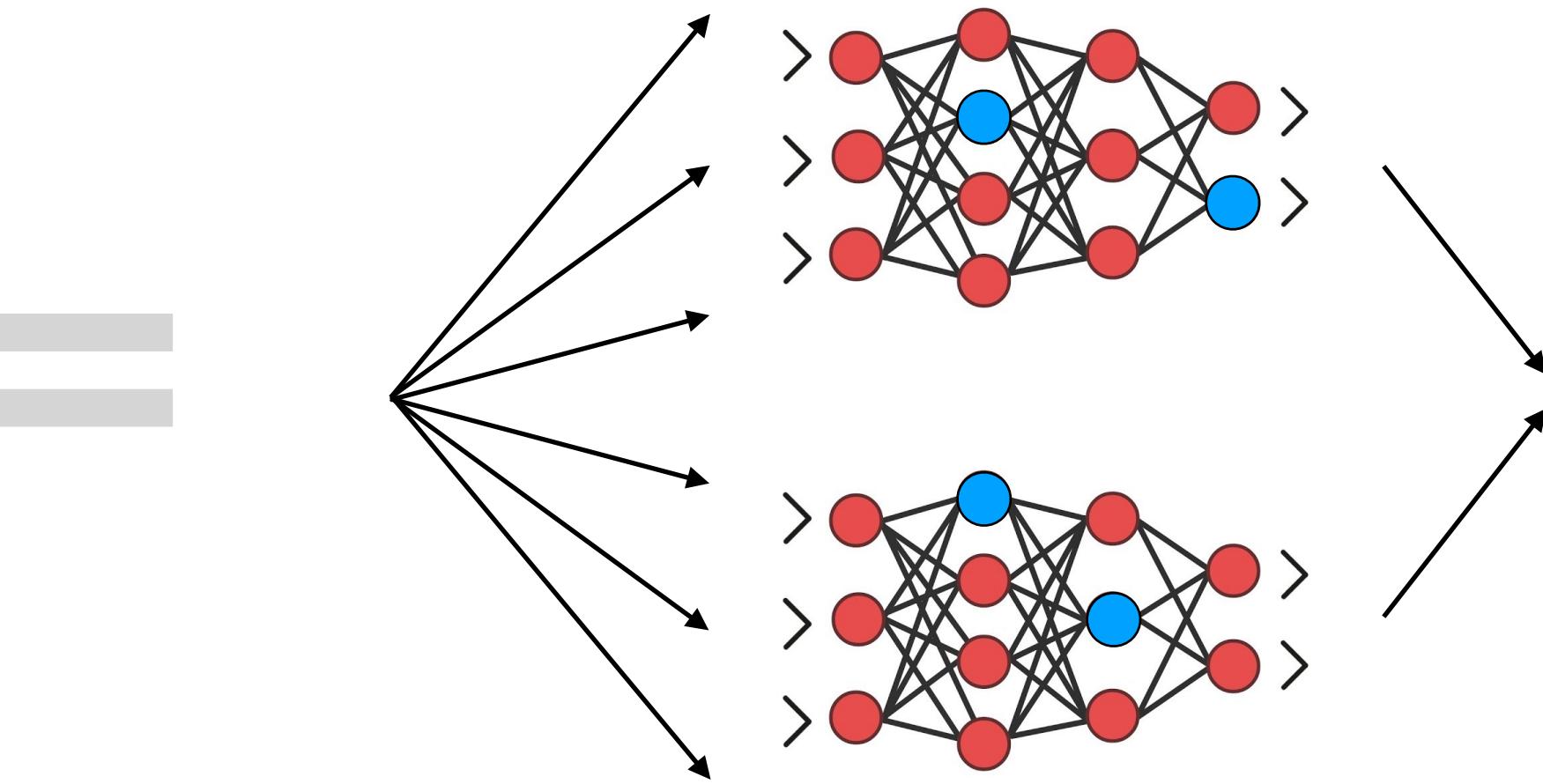


Program c'

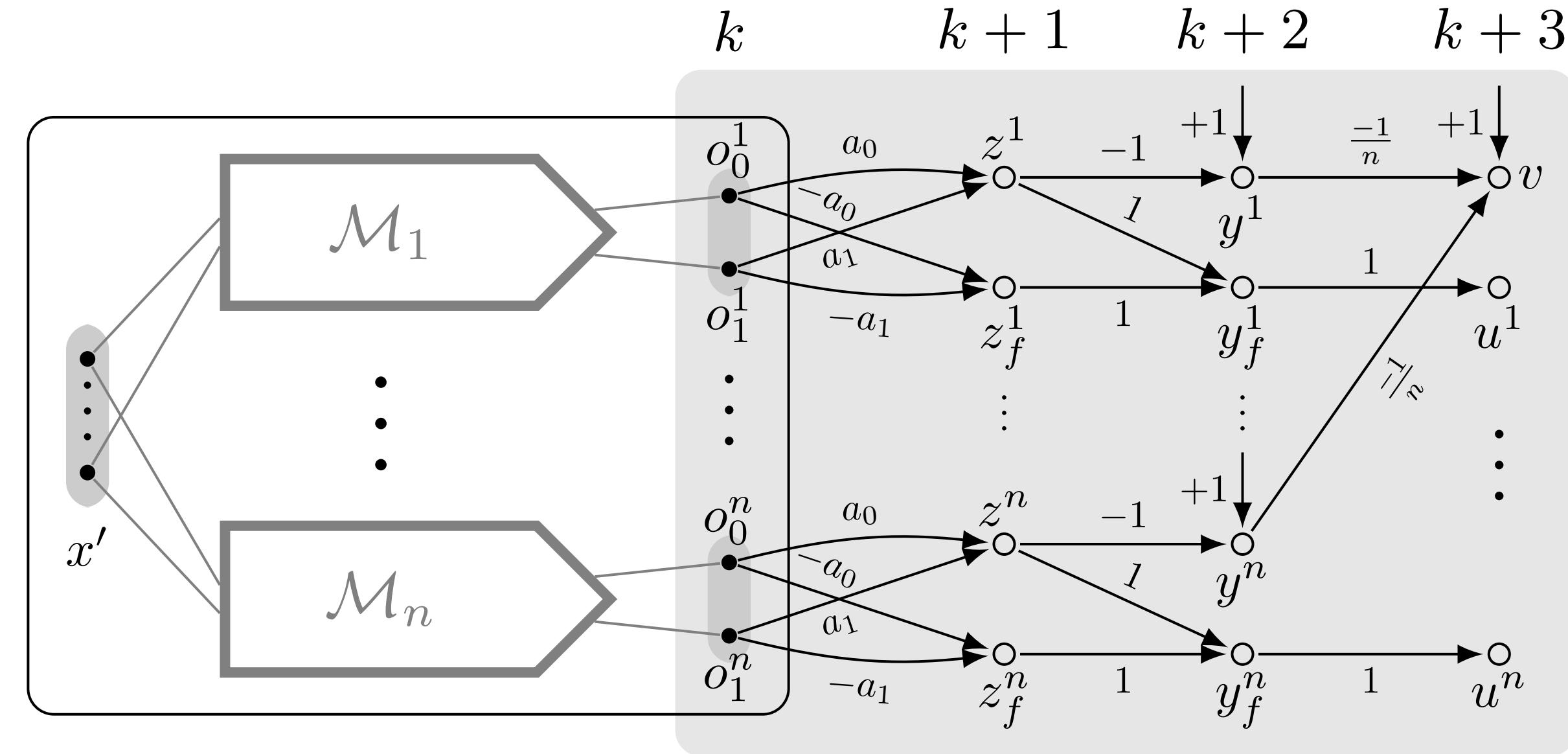
```
i:=0; i':=0;  
while (i<N) do  
  j:=N-1; j':=N-1;  
  while (j>i) do  
    if (a[j-1]>a[j]) then  
      swap(a,j,j-1);  
    if (a'[j'-1]>a'[j']) then  
      swap(a',j',j'-1);  
    j--; j'--  
  i++; i'++
```



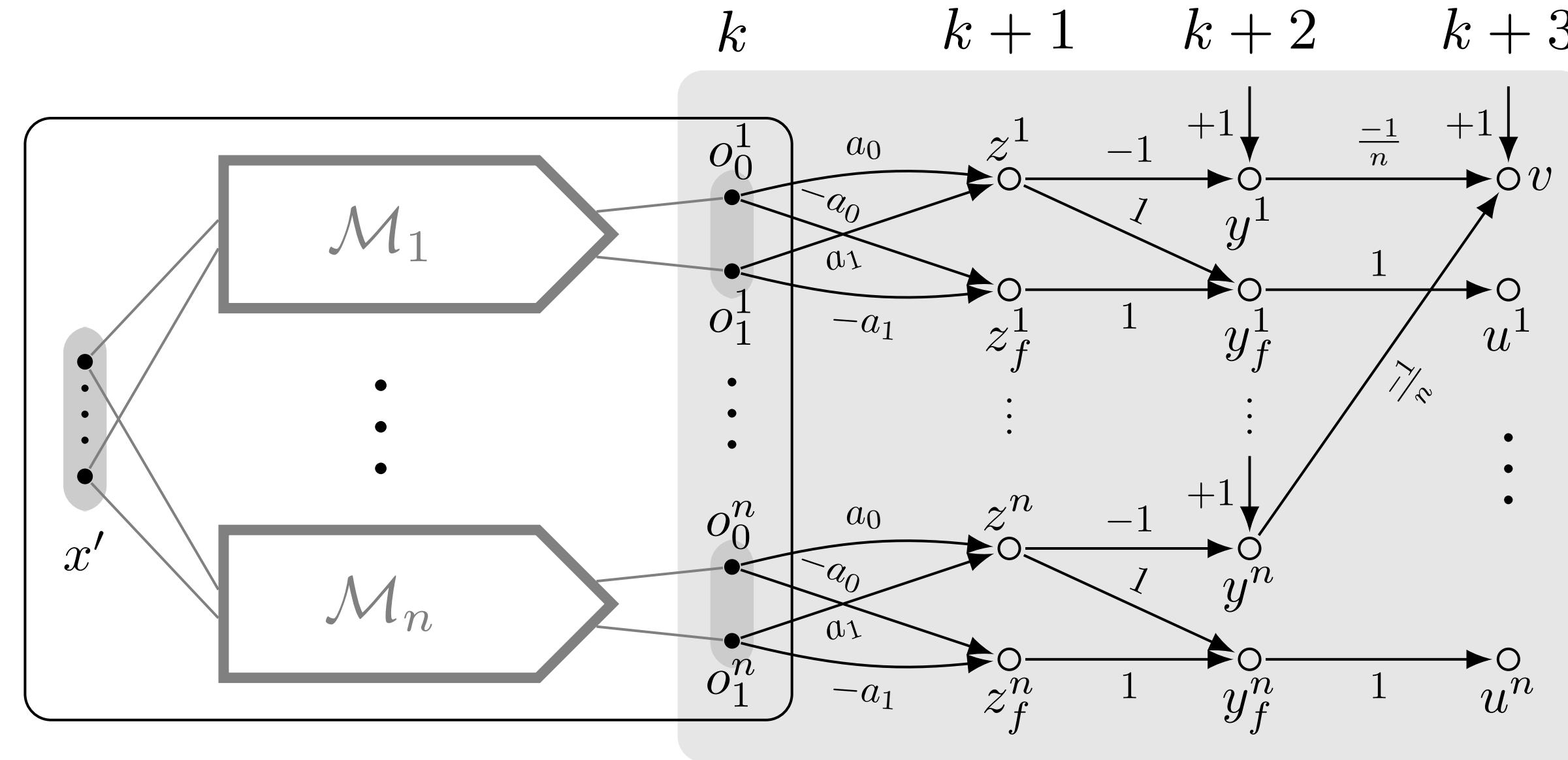
Product program P



Our solution



Our solution



Property of the product

(P1) $v = 0$ and $u^j > 0$ for all $j \in \{1, \dots, n\}$

(P2) x' is a robust counterfactual for x across \mathcal{M} .

Our solution

Result #1:

Thm. Determining whether there exists a robust counterfactual for a set of structurally equivalent piece-wise linear models is NP-complete.

Our solution

Result #1:

Thm. Determining whether there exists a robust counterfactual for a set of structurally equivalent piece-wise linear models is NP-complete.

Result #2:

Thm. Determining whether there exists a robust counterfactual for a set of piece-wise linear models is NP-complete.

Our solution

Result #1:

Thm. Determining whether there exists a robust counterfactual for a set of structurally equivalent piece-wise linear models is NP-complete.

Result #2:

Thm. Determining whether there exists a robust counterfactual for a set of piece-wise linear models is NP-complete.

Result #3:

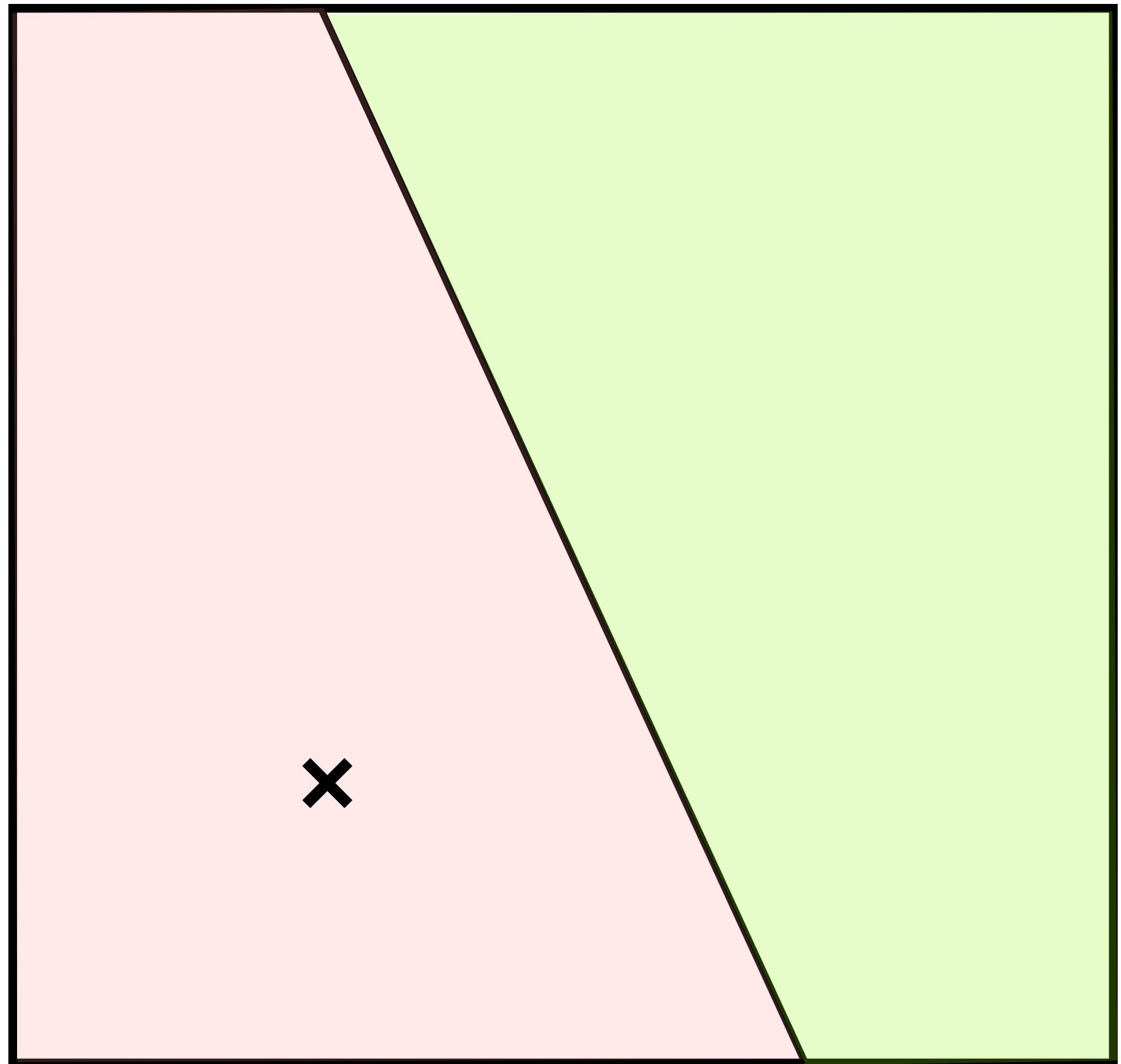
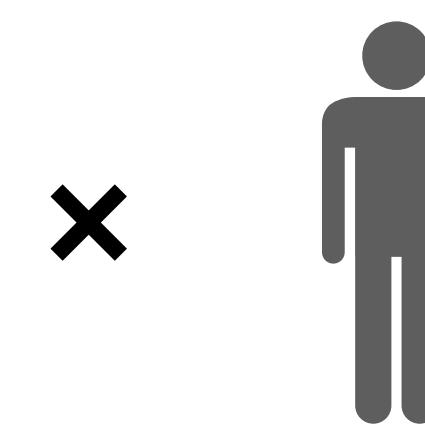
- The product network is itself a neural network
- We extend standard MILP encodings for CFX computation to generate robust CFXs under model multiplicity.

Brittle explanations ahead!

Threats

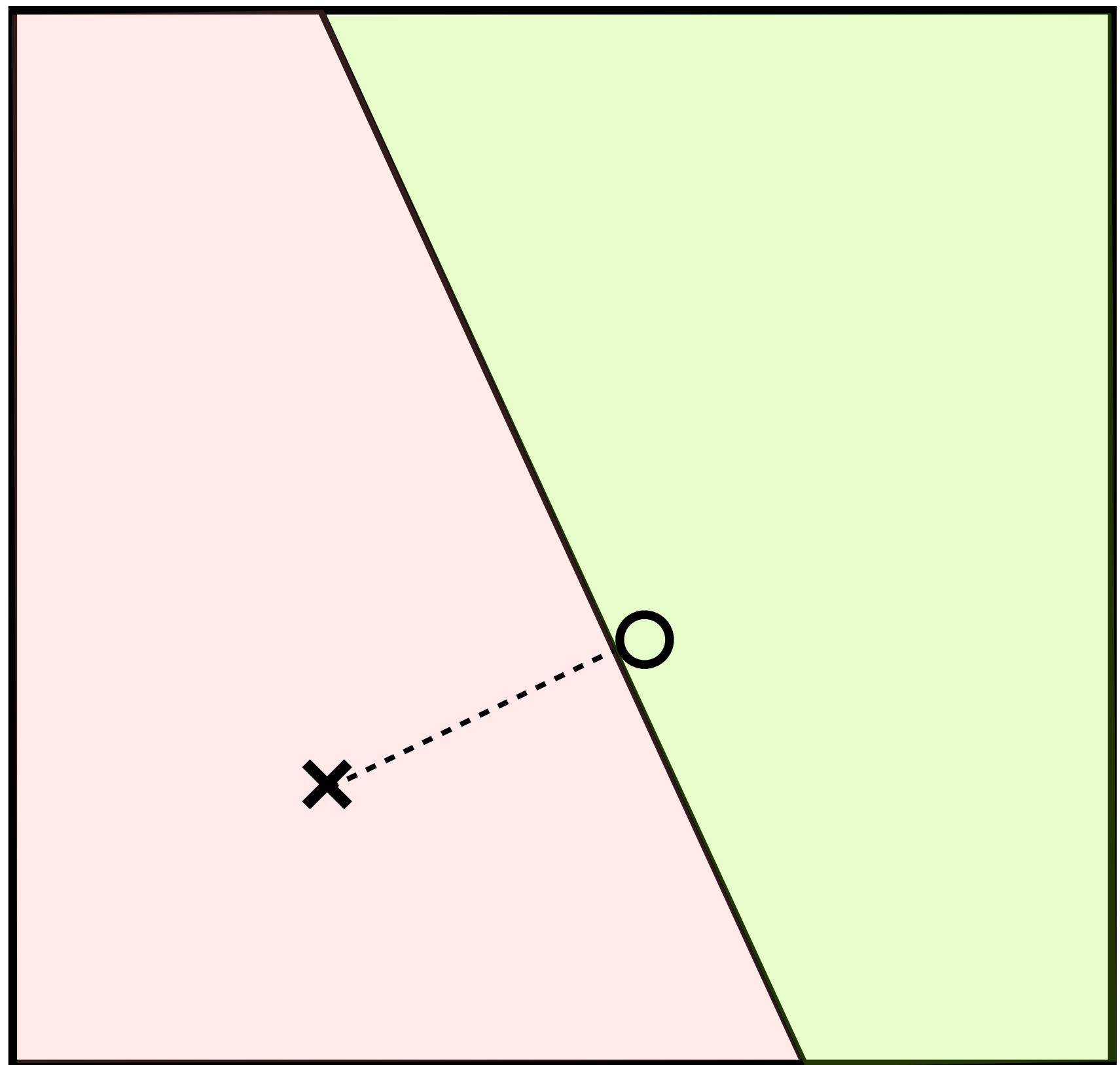
1. Model perturbations
2. Model multiplicity
3. Noisy execution

Noisy execution



- Age: 30
- Amount: £15K
- Duration: 24M

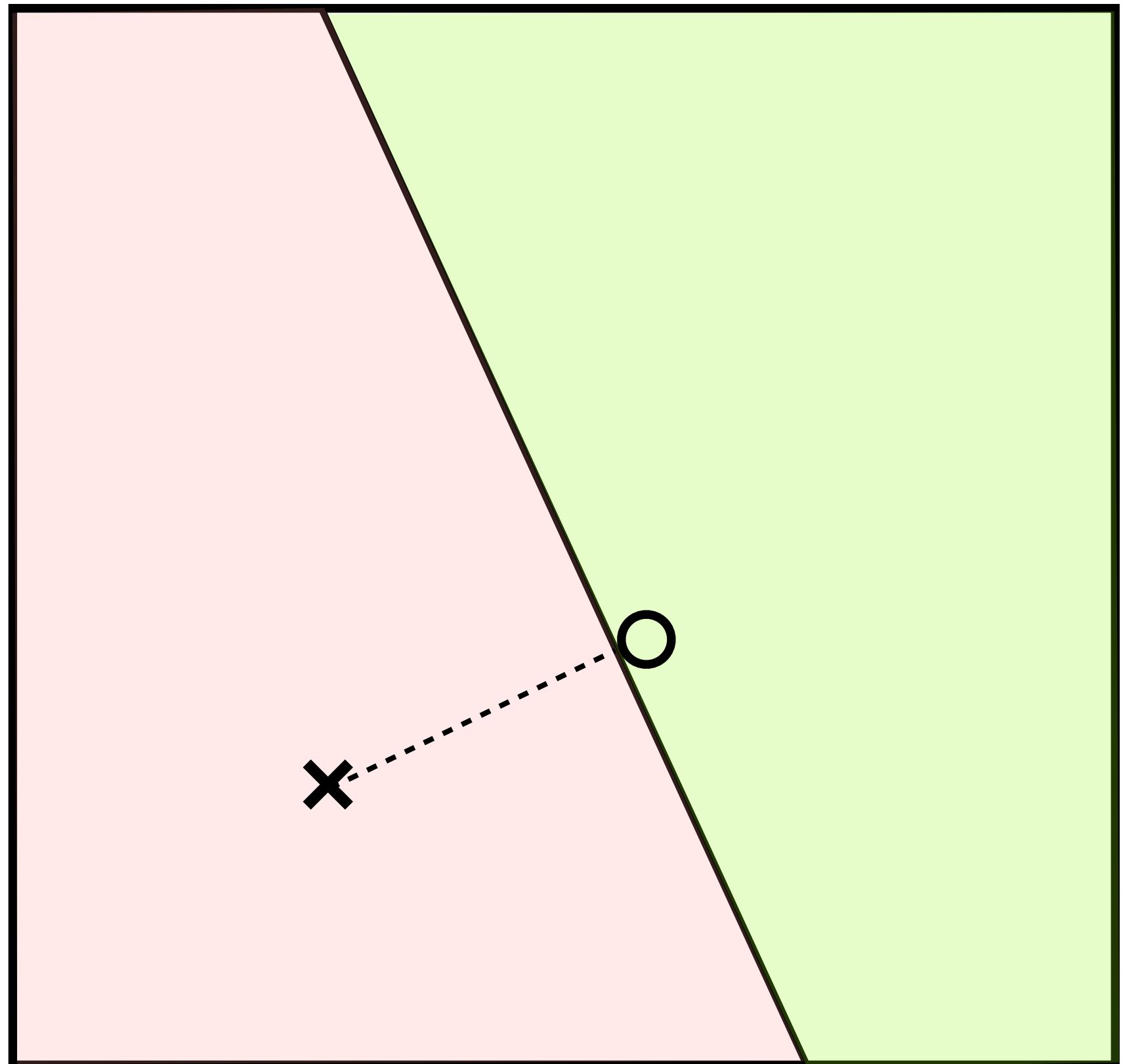
Noisy execution



- Age: 30
- Amount: **£15K**
- Duration: 24M

- Age: 30
- Amount: **£10K**
- Duration: 24M

Noisy execution

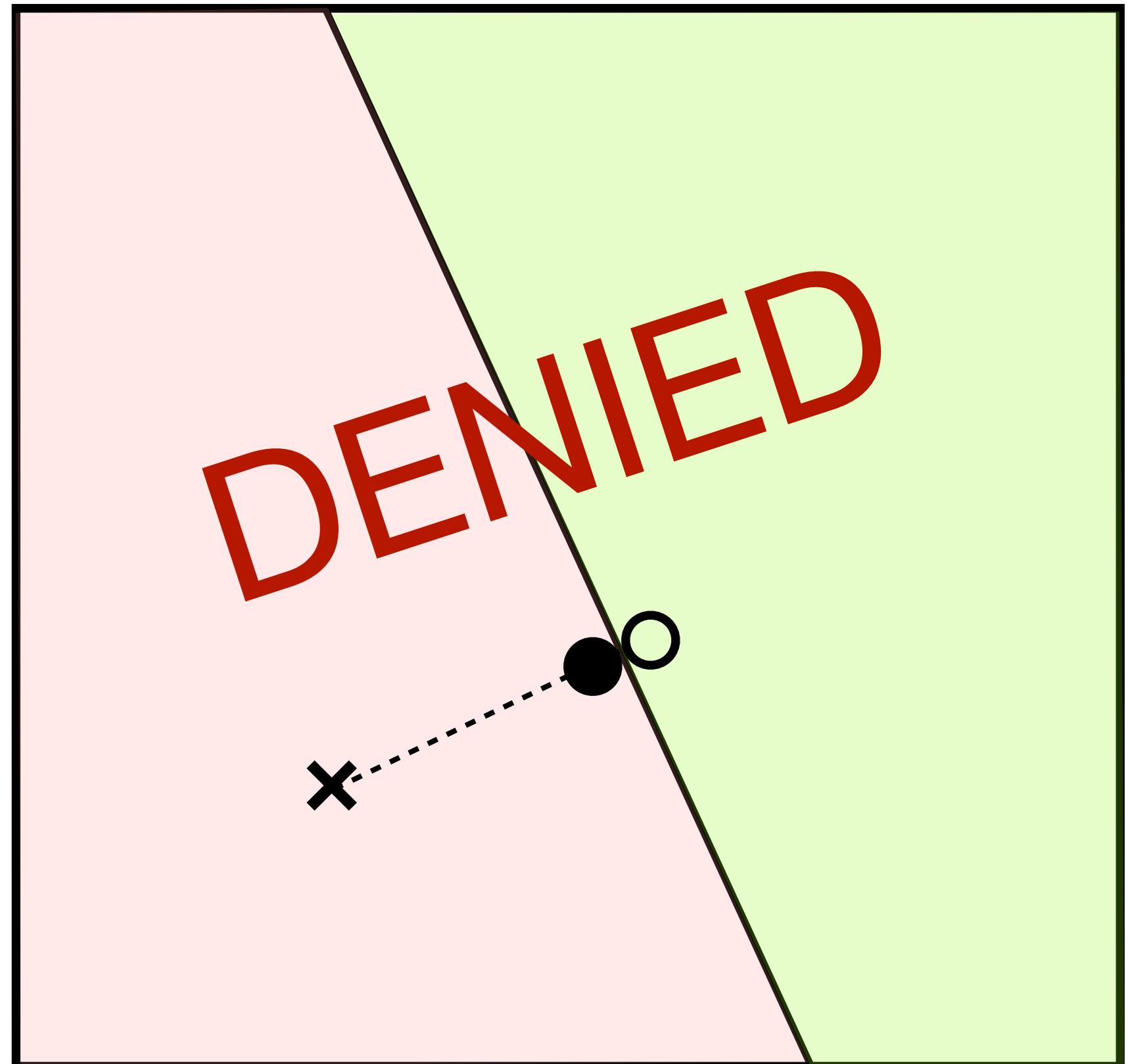


- Age: 30
- Amount: **£15K**
- Duration: 24M

- Age: 30
- Amount: **£10K**
- Duration: 24M

- Age: 30
- Amount: **£9.9K**
- Duration: 24M

Noisy execution

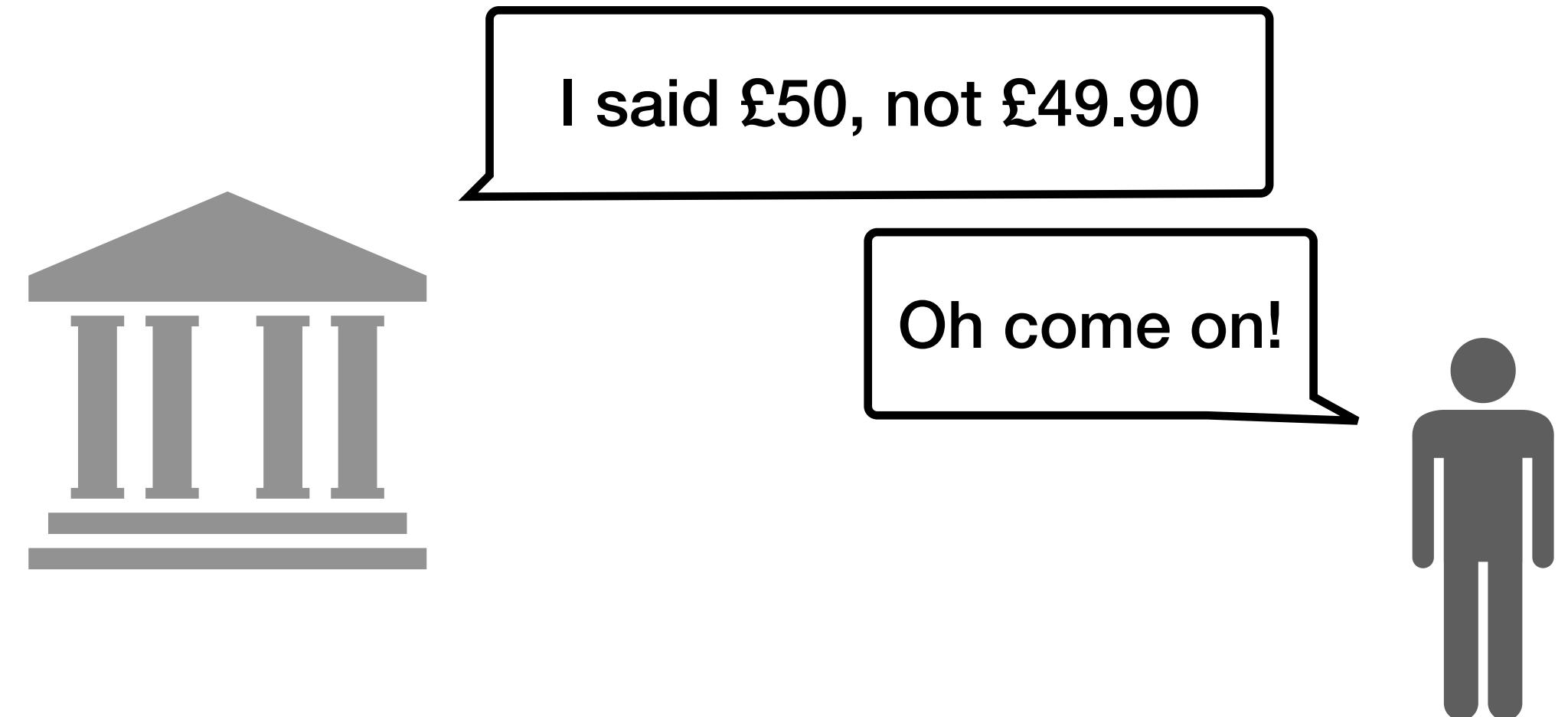


- Age: 30
• Amount: **£15K**
• Duration: 24M
- Age: 30
• Amount: **£10K**
• Duration: 24M
- Age: 30
• Amount: **£9.9K**
• Duration: 24M

Implications

Recourses are often noisily implemented in real-world settings

- Noise may **invalidate** CX
- **Jeopardise** explanatory function
- **Reduce** trust



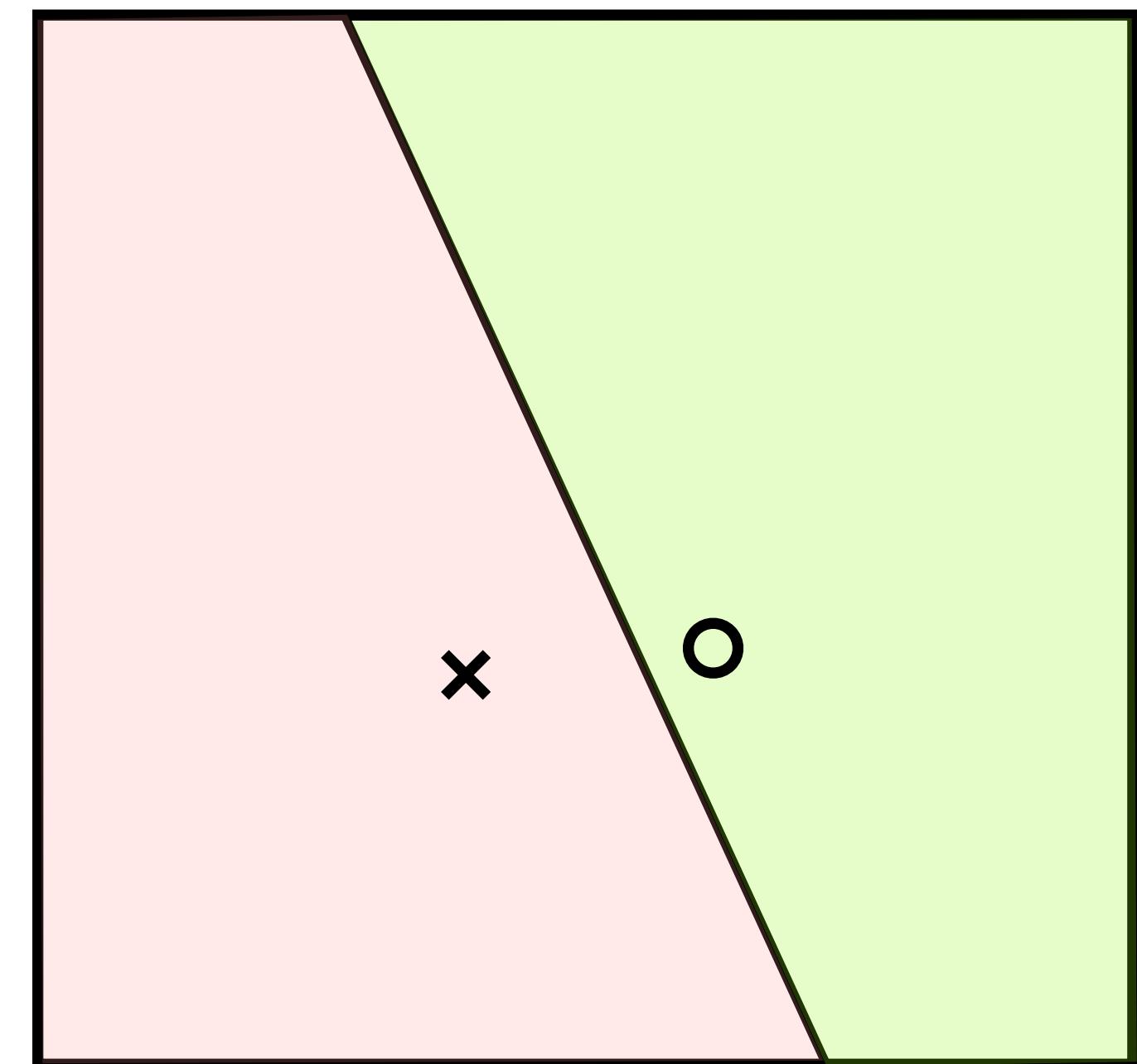
Our solution

We proposed to use formal verification to identify robust CXs

Our solution

We proposed to use formal verification to identify robust CXs

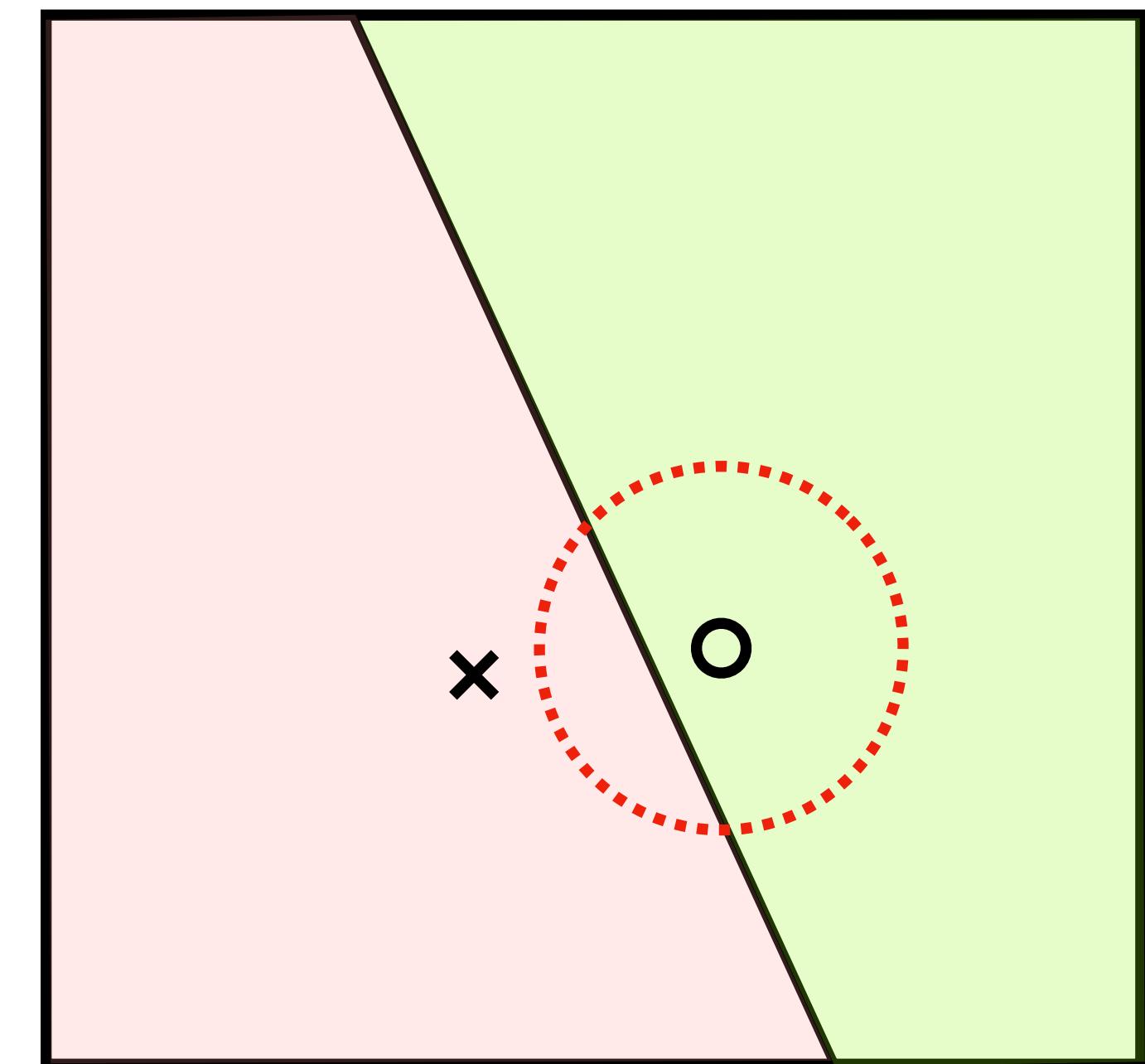
- Given a CX x and model \mathcal{M}



Our solution

We proposed to use formal verification to identify robust CXs

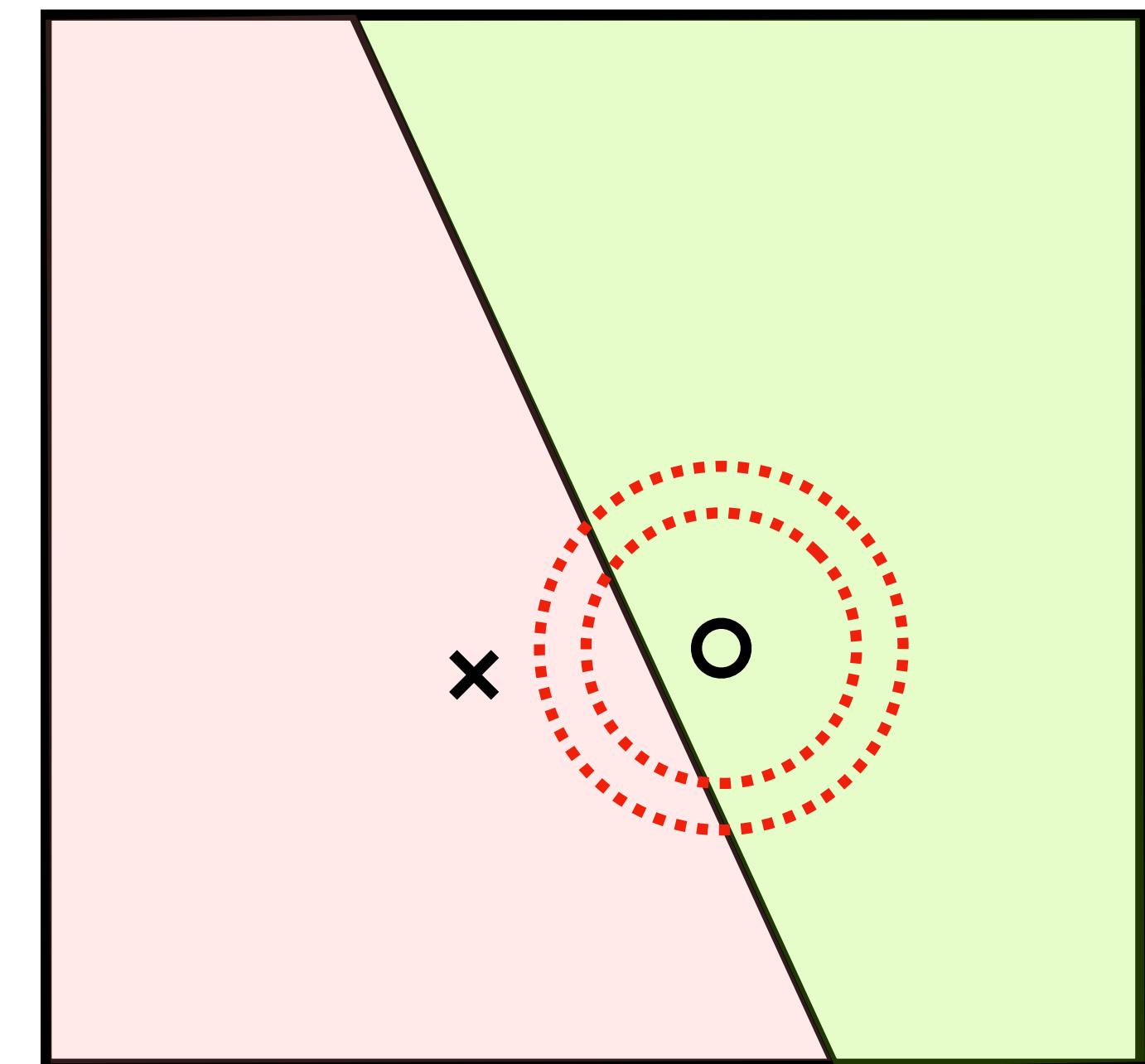
- Given a CX x and model \mathcal{M}
- Check **local robustness** of \mathcal{M} around x using verifiers



Our solution

We proposed to use formal verification to identify robust CXs

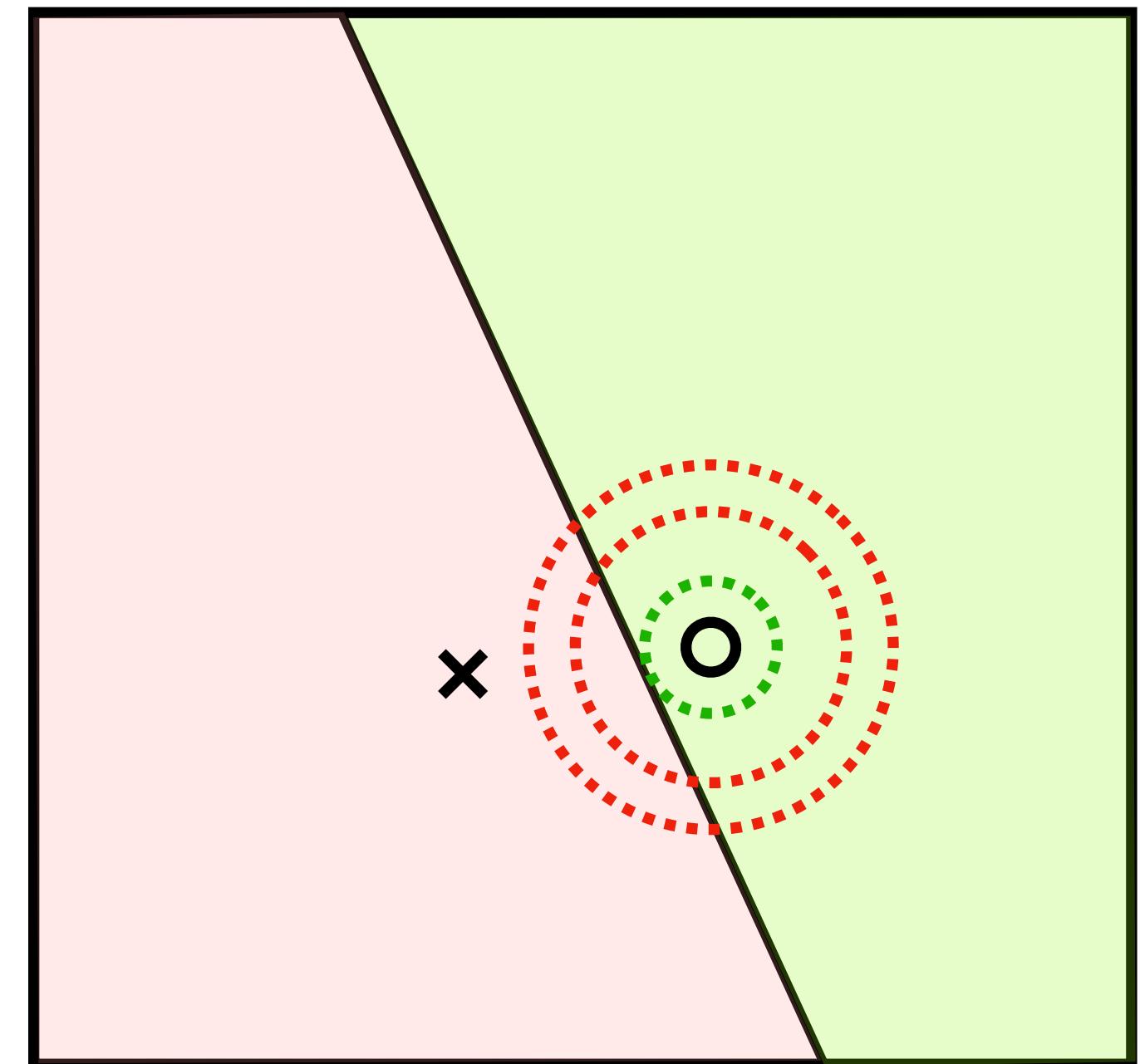
- Given a CX x and model \mathcal{M}
- Check **local robustness** of \mathcal{M} around x using verifiers



Our solution

We proposed to use formal verification to identify robust CXs

- Given a CX x and model \mathcal{M}
- Check **local robustness** of \mathcal{M} around x using verifiers
- CX **guaranteed to be robust** when safe radius identified

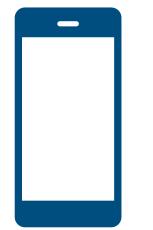


Summing up

- CX generation methods focus on **minimising distance**
- This may result in **brittle explanations**
- We have examined **lack of robustness** in three scenarios:
 - model shifts, model multiplicity and noisy execution
- Can we borrow ideas from other areas of CS to fix this?

Thank you!

Contacts:

- f.leofante@imperial.ac.uk
- <https://fraleo.github.io/>
-  [@fraleofante](https://twitter.com/@fraleofante)

