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Agenda

• Explainable AI


• Counterfactual explanations and recourse


• Robustness


• what does it mean?


• why is it needed?


• how can we achieve it?
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Explainable AI (XAI)

XAI methods span a wide range of topics within AI and beyond, e.g.


• automated planning


• machine learning


• human computer interaction


Today we will focus on explaining deep neural networks (DNNs) 

• will discuss high-level concepts rather than specific algorithms
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Explainable AI (XAI)

XAI methods span a wide range of topics within AI and beyond, e.g.


• automated planning


• machine learning


• human computer interaction


Today we will focus on explaining deep neural networks (DNNs) 

• high-level concepts rather than specific algorithms


• fictional use case and explanations
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Supervised learning
Training set

• Age: 25

• Amount: £40K

• Duration: 36M

• Age: 32

• Amount: £20K

• Duration: 24M

• Age: 82

• Amount: £26K

• Duration: 34M

• Age: 54

• Amount: £14K

• Duration: 24M

denied

denied

accepted

accepted
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Training set Deep neural network

(using your favourite algorithm)
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• Duration: 36M
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Supervised learning
Deep neural network

(using your favourite algorithm)

Predicted class: 

denied

New instance

Training set

• Age: 25

• Amount: £40K

• Duration: 36M

• Age: 32

• Amount: £20K

• Duration: 24M

• Age: 82

• Amount: £26K

• Duration: 34M

• Age: 54

• Amount: £14K

• Duration: 24M

denied

denied

accepted

accepted
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Supervised learning
Training set

Predicted class: 

denied

Focus: explaining model predictions

• Why is it denied?

• Why not accepted?

• How do I get accepted?

• And many more questions…

• Age: 25

• Amount: £40K

• Duration: 36M

• Age: 32

• Amount: £20K

• Duration: 24M

• Age: 82

• Amount: £26K

• Duration: 34M

• Age: 54

• Amount: £14K

• Duration: 24M

denied

denied

accepted

accepted

New instance
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Challenge

Loan denied
• Age: 30

• Amount: £15K

• Duration: 24M

DNNs are black boxes!

?
!?!
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Challenge

Loan denied
• Age: 30

• Amount: £15K

• Duration: 24M

DNNs are black boxes!

?
!?!
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Post-hoc explainability: counterfactual explanations



Counterfactual explanations (CXs)

Original instance

•Age: 30

•Amount: £15K

•Duration: 24M

Loan denied
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Counterfactual explanations (CXs)

Counterfactual explanation

•Age: 30

•Amount: £10K

•Duration: 24M

The application would have been accepted 
 had you asked for £10K instead of £15K

Original instance

•Age: 30

•Amount: £15K

•Duration: 24M

Loan denied
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Computing a CX

• Given an input  and a binary classifier  such that 


• A distance function  

xF ℳ ℳ(xF) = c

d
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Computing a CX

• Given an input  and a binary classifier  such that 


• A distance function  

 
A counterfactual explanation  is computed as:

xF ℳ ℳ(xF) = c

d

x

arg min
x

 d(xF, x)

subject to ℳ(x) = 1 − c
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Computing a CX
Most approaches solve relaxation defined as:

Counterfactual explanations without opening the black box: automated decisions and the GDPR. Wachter et al, Harvard Journal of Law & Technology 2018.

arg min
x

 ℓ(ℳ(x),1 − c) + λ ⋅ d(xF, x)
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Computing a CX
Most approaches solve relaxation defined as:

where:


•  is a differentiable loss function which minimises the gap between  
current and desired prediction 

•  controls distance trade-off

ℓ

λ

arg min
x

 ℓ(ℳ(x),1 − c) + λ ⋅ d(xF, x)

Counterfactual explanations without opening the black box: automated decisions and the GDPR. Wachter et al, Harvard Journal of Law & Technology 2018. 17



Computing a CX
Most approaches solve relaxation defined as:

where:


•  is a differentiable loss function which minimises the gap between  
current and desired prediction 

•  controls distance trade-off

ℓ

λ

arg min
x

 ℓ(ℳ(x),1 − c) + λ ⋅ d(xF, x)

Counterfactual explanations without opening the black box: automated decisions and the GDPR. Wachter et al, Harvard Journal of Law & Technology 2018. 18



Is minimising distance always good?

 CXs are often indistinguishable from adversarial examples!

Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis. Pawelczyk et al, AISTATS 2022.
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! 
DANGER

Brittle explanations ahead!

Threats 

1. Model perturbations 

2. Model multiplicity 

3. Noisy execution
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! 
DANGER
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Robust XAI

Threats 

1. Model perturbations 

2. Model multiplicity 

3. Noisy execution

Rethinking CX algos to mitigate these risks.



! 
DANGER

Brittle explanations ahead!
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Threats 

1. Model perturbations 

2. Model multiplicity 

3. Noisy execution



Model perturbations

t0
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Model perturbations

t0
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Model perturbations

t0 t1
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Model perturbations

t0 t1 tn
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Model perturbations

t0 t1 tn
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Model perturbations

t0 t1 tn tn+1
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Model perturbations

t0 t1 tn tn+1
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Model perturbations

t0 t1

DENIED

tn tn+1
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Implications
Model shifts may occur as a result of data shifts


Dilemma 

• Trust the old CX, although possibly contradicted by new data


• Trash the old CX, possibly upsetting end users
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Implications
Model shifts may occur as a result of data shifts


Dilemma 

• Trust the old CX, although possibly contradicted by new data


• Trash the old CX, possibly upsetting end users
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Implications
Model shifts may occur as a result of data shifts


Dilemma 

• Trust the old CX, although possibly contradicted by new data


• Trash the old CX, possibly upsetting end users

accepted
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Implications
Model shifts may occur as a result of data shifts


Dilemma 

• Trust the old CX, although possibly contradicted by new data


• Trash the old CX, possibly upsetting end users

denied
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Our solution

Formalising the Robustness of Counterfactual Explanations for Neural Networks. Jiang et al, AAAI 2023. 35

A model shift  is a function mapping an DNN into another one s.t.


• the two DNNs have same topology and, 

• their differences (in parameter space) are bounded. 

Define set of plausible model shifts as:

S

Δ = {S ∣ ℳ − S(ℳ) ≤ δ}

We use interval abstractions to obtain formal robustness guarantees.
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We use interval abstractions to obtain formal robustness guarantees.

Our solution



We use interval abstractions to obtain formal robustness guarantees.
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A model shift  is a function mapping an DNN into another one s.t.


• the two DNNs have same topology and, 

• their differences (in parameter space) are bounded. 

Define set of plausible model shifts as:

S

Δ = {S ∣ ∥ℳ − S(ℳ)∥ ≤ δ}

Our solution



• Plausible model shifts induce a family of DNNs…


• Need a way to reason about them concisely! 

Enter the interval neural network :


• standard DNN architecture but


• interval-valued weights and biases.

ℐ
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Our solution



• Plausible model shifts induce a family of DNNs…


• Need a way to reason about them concisely! 

Enter the interval neural network ℐ

Abstraction based Output Range Analysis for Neural Networks, Prabhakar and Afzal, NeurIPS 2019.
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Our solution

Δ
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Our solution
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Our solution



Our solution

Diabetes NO2

Robustness decreases with shift magnitude - for robust methods as well!
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Our solution

Diabetes NO2

Robustness of base methods increased - 100% in some cases.
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! 
DANGER

Brittle explanations ahead!
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Threats 

1. Model perturbations 

2. Model multiplicity 

3. Noisy execution



Model multiplicity

Model Multiplicity: Opportunities, Concerns, and Solutions. Black et al, ACM FAccT’22.


Situation where models of equal accuracy differ in the process by which they reach a given prediction 


45



Model multiplicity
• Age: 30

• Amount: £15K

•Duration: 24M
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Model multiplicity
• Age: 30

• Amount: £15K

•Duration: 24M
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Model multiplicity
• Age: 30

• Amount: £10K 
•Duration: 24M
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Model multiplicity
• Age: 30

• Amount: £10K 
•Duration: 24M

49



Model multiplicity
• Age: 30

• Amount: £10K 
•Duration: 24M
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Model multiplicity
• Age: 30

• Amount: £10K 
•Duration: 24M

? ??

DENIED
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Implications

• Disagreeing models might raise concerns about the justifiability of CXs


• Different models might offer better/worse recourse options

Increase by £50

That’s not enough!


Erm, I’ll leave you  
alone now…
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Our solution

Counterfactual Explanations and Model Multiplicity: a Relational Verification View. Leofante et al, KR 2023. 53

We use tools from relational verification.


• Introduce a novel product construction tailored for the problem.


• Use this construction to study the complexity of generating robust CFXs 
under model multiplicity.


• Propose an approach to generate robust CFXs via MILP.



Sequential products

Program c

*Example taken from: Relational Verification Using Product Programs. Barthe et al, FM’11.
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Sequential products

Program c Program c’ Product program P

=

*Example taken from: Relational Verification Using Product Programs. Barthe et al, FM’11.
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Sequential products

Program c Program c’ Product program P

=

=
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construct a product network Pc such that for x0 2 Rm and
Pc(x0) = (v, u1, . . . , un)|, the following are equivalent:
(P1) v = 0 and uj > 0 for all j 2 {1, . . . , n}
(P2) M(x0) = 1� c for each M 2 M.
Intuitively, v = 0 ensures that Mj(x0) 6= c, for each j.
Additionally, we use u1, . . . , un to detect whether the clas-
sification outcome of some model is undefined for x0, thus
ruling it out as a potential CFX. Namely, uj = 0 would
mean that Mj(x0) is undefined. We now present how Pc

is constructed. A proof of equivalence of (P1) and (P2) is
omitted due to space constraints and can be found in the
supplementary material.

Assume that each model Mj has k layers with W j
i being

the weight matrix and Bj
i the bias vector in its i-th layer.

Additionally, we use (oj0, o
j
1)

| to denote the output of model
Mj . We set Pc to be an FFNN with k + 3 layers, where:
• The input layer of Pc is of size m
• The layer i 2 {1, . . . , k � 1} of Pc uses ReLU activation

function and is parameterised by the matrix Wi and bias
vector Bi obtained as

Wi =

2

64
W 1

i
...

Wn
i

3

75 Bi =

2

64
B1

i
...

Bn
i

3

75

• Layer k is of size 2n and uses identity activation func-
tion, layers k + 1 and k + 2 are of size 2n and use ReLU
activation function, and final layer is of size n+ 1.

• The weights Wk+1 2 R2n ⇥ R2n is the block diagonal
matrix

Wk+1 =

2

4
A · · · 0
...

. . .
...

0 · · · A

3

5 where A =


a0 a1
�a0 �a1

�
,

for ac = 1, a1�c = �1, while Bk+1 is a zero vector.
• The weights Wk+2 2 R2n ⇥ R2n is the block diagonal

matrix

Wk+2 =

2

4
D · · · 0
...

. . .
...

0 · · · D

3

5 where D =


�1 0
1 1

�
,

and Bk+2 = (1, 0, 1, 0, . . . , 1, 0)|.
• The weights Wk+3 2 Rn+1 ⇥ R2n is the matrix

Wk+3 =

2

6664

�1/n 0 �1/n 0 · · · �1/n 0
0 1 0 · · ·
0 0 0 1 0 · · ·

· · ·
0 · · · 0 1

3

7775
,

and Bk+3 = (1, 0, · · · , 0)|.
A pictorial representation of Pc can be found in Figure 1.

Next, we show that finding a robust CFX x0 across a set
of models reduces to finding an input for which (P1) holds
and vice versa.
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Figure 1: Product network Pc.

Lemma 1. Let M be a set of homogeneous FFNNs consis-
tent for a factual input x 2 Rm, classified as c 2 {0, 1} by
M, and x0 2 Rm such that d(x, x0)  �. Then (P1) holds
iff x0 is a robust counterfactual for x across M.

Proof. Let x 2 Rm be classified as c 2 {0, 1} by M. Let
x0 2 Rm such that d(x, x0)  �.

()) Since (P2) follows from (P1), we have that M(x0) =
1 � c for each M 2 M. In conjunction with d(x, x0)  �,
we obtain that x0 is a CFX for x, �,M for each M 2 M.
Hence, x0 is a robust counterfactual for x across M.

(() Let x0 be a robust counterfactual for x across M.
Then M(x0) = 1� c for each M 2 M. By construction of
Pc, from (P2) we obtain (P1).

Lemma 1 is a strong result that enables us to generate ro-
bust explanations by using existing off-the-shelf approaches
for verification of reachability properties for FFNNs. We
can now prove our main result, which shows that determin-
ing the existence of a robust counterfactual is NP-complete.
Theorem 1. The problem of existence of a robust explana-
tion for sets of homogeneous FFNNs is NP-complete.

Proof. The lower bound follows from the lower bound for
the existence of a CFX for a single model, which in turn can
be obtained by a reduction from the complement of the local
robustness property for ReLU FFNNs (Katz et al. 2017).

As for the upper bound, let M be a set of models con-
sistent for x 2 Rm, and let c be the class of x in M.
By Lemma 1 it follows that there exists a robust explana-
tion x0 for x across M iff d(x, x0)  � and Pc(x0) = 0.
Since checking the latter is NP-complete and the product
network Pc is linear in the size of M, the result follows.

Finally, we relax the requirement of homogeneity and ex-
tend the above upper bound to sets of arbitrary models repre-
senting piecewise linear functions. For such sets of models
it might not be feasible to construct a product network. In-
stead, we can realise a product construction as a MILP, e.g.,
following the approach of (Akintunde et al. 2020). We can
then reduce checking existence of a robust explanation to the
MILP feasibility problem known to be NP-complete, which
gives our last result.
Theorem 2. The problem of existence of a robust explana-
tion for sets of piecewise-linear models is NP-complete.

Our solution
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Lemma 1. Let M be a set of homogeneous FFNNs consis-
tent for a factual input x 2 Rm, classified as c 2 {0, 1} by
M, and x0 2 Rm such that d(x, x0)  �. Then (P1) holds
iff x0 is a robust counterfactual for x across M.

Proof. Let x 2 Rm be classified as c 2 {0, 1} by M. Let
x0 2 Rm such that d(x, x0)  �.

()) Since (P2) follows from (P1), we have that M(x0) =
1 � c for each M 2 M. In conjunction with d(x, x0)  �,
we obtain that x0 is a CFX for x, �,M for each M 2 M.
Hence, x0 is a robust counterfactual for x across M.

(() Let x0 be a robust counterfactual for x across M.
Then M(x0) = 1� c for each M 2 M. By construction of
Pc, from (P2) we obtain (P1).

Lemma 1 is a strong result that enables us to generate ro-
bust explanations by using existing off-the-shelf approaches
for verification of reachability properties for FFNNs. We
can now prove our main result, which shows that determin-
ing the existence of a robust counterfactual is NP-complete.
Theorem 1. The problem of existence of a robust explana-
tion for sets of homogeneous FFNNs is NP-complete.

Proof. The lower bound follows from the lower bound for
the existence of a CFX for a single model, which in turn can
be obtained by a reduction from the complement of the local
robustness property for ReLU FFNNs (Katz et al. 2017).

As for the upper bound, let M be a set of models con-
sistent for x 2 Rm, and let c be the class of x in M.
By Lemma 1 it follows that there exists a robust explana-
tion x0 for x across M iff d(x, x0)  � and Pc(x0) = 0.
Since checking the latter is NP-complete and the product
network Pc is linear in the size of M, the result follows.

Finally, we relax the requirement of homogeneity and ex-
tend the above upper bound to sets of arbitrary models repre-
senting piecewise linear functions. For such sets of models
it might not be feasible to construct a product network. In-
stead, we can realise a product construction as a MILP, e.g.,
following the approach of (Akintunde et al. 2020). We can
then reduce checking existence of a robust explanation to the
MILP feasibility problem known to be NP-complete, which
gives our last result.
Theorem 2. The problem of existence of a robust explana-
tion for sets of piecewise-linear models is NP-complete.

Property of the product

Our solution
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Result #1: 


Thm. Determining whether there exists a robust counterfactual for a set of structurally 
equivalent piece-wise linear models is NP-complete.


Result #2: 


Thm. Determining whether there exists a robust counterfactual for a set of piece-wise 
linear models is NP-complete.


Result #3:  

• The product network is itself a neural network


• We extend standard MILP encodings for CFX computation to generate robust CFXs 
under model multiplicity.


Our solution
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! 
DANGER

Brittle explanations ahead!
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Threats 

1. Model perturbations 

2. Model multiplicity 

3. Noisy execution



Noisy execution

CFX
•Age: 30

•Amount: £15K

•Duration: 24M
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Noisy execution
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Noisy execution

CFX

•Age: 30

•Amount: £10K

•Duration: 24M

•Age: 30

•Amount: £15K

•Duration: 24M

•Age: 30

•Amount: £9.9K

•Duration: 24M

? ??

DENIED
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Implications

Recourses are often noisily implemented in real-world settings 

• Noise may invalidate CX


• Jeopardise explanatory function


• Reduce trust

Manipulation-Proof Machine Learning. Björkegren et al, arxiv preprint https://arxiv.org/abs/2004.03865, 2020.


Oh come on!

I said £50, not £49.90
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Our solution
We proposed to use formal verification to identify robust CXs 
 

Towards Robust Contrastive Explanations for Human-Neural Multi-agent Systems. Leofante and Lomuscio, AAMAS 2023.

Robust Explanations for Human-Neural Multi-agent Systems with Formal Verification. Leofante and Lomuscio, EUMAS 2023.
 68



We proposed to use formal verification to identify robust CXs 
 

• Given a CX  and model x ℳ

Towards Robust Contrastive Explanations for Human-Neural Multi-agent Systems. Leofante and Lomuscio, AAMAS 2023.

Robust Explanations for Human-Neural Multi-agent Systems with Formal Verification. Leofante and Lomuscio, EUMAS 2023.


CF
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We proposed to use formal verification to identify robust CXs 
 

• Given a CX  and model 


• Check local robustness of   
around  using verifiers

x ℳ

ℳ
x

Towards Robust Contrastive Explanations for Human-Neural Multi-agent Systems. Leofante and Lomuscio, AAMAS 2023.

Robust Explanations for Human-Neural Multi-agent Systems with Formal Verification. Leofante and Lomuscio, EUMAS 2023.
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We proposed to use formal verification to identify robust CXs 
 

• Given a CX  and model 


• Check local robustness of   
around  using verifiers


• CX guaranteed to be robust when  
safe radius identified
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Our solution



Summing up

• CX generation methods focus on minimising distance 

• This may result in brittle explanations 

• We have examined lack of robustness in three scenarios:


• model shifts, model multiplicity and noisy execution


• Can we borrow ideas from other areas of CS to fix this? 
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Thank you!
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Contacts:


•           f.leofante@imperial.ac.uk


•           https://fraleo.github.io/


•          @fraleofante
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