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Premise



QA: Vision and Language domain

Given a question presented in natural 
language and visual information, the 
machine learning system has to 
accurately predict an answer to the 
question.


Eg.: What colour is the woman’s 
jacket?

Antol, Stanislaw, et al. "Vqa: Visual question answering." Proceedings of the IEEE international conference on computer vision. 2015.



+Explanation

Question: What utensil is pictured?


A: ? 


Explanations: There is a fork on the table.



+Knowledge grounding

Q: Is this in an Asian country?


Explanations: Japanese words on the 
train and Japan is an Asian country.



+Commonsense reasoning

Q: What is Person 1 going to do? 


A: Person 1 is going to lead a 
business meeting



+Explanation

Q: What is Person 1 going to do? 


A: Person 1 is going to lead a 
business meeting


E: Person1 is at the head of a table 
of men in suits.



X in Vision and Language  
Person1 is at the head of a table of men in suits.



Visual justifications

Ramprasaath R Selvaraju, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In ICCV 2017



Textual justifications



Complexity

As images get complex where 
multiple concepts intermingle, 
labelling and explaining the labels 
becomes challenging. 


Subjective experience usually is 
associated with explanations - there 
are multiple ways to arrive at an 
answer

Breaking Shortcuts by Masking for Robust Visual Reasoning

Keren Ye, Mingda Zhang and Adriana Kovashka
Department of Computer Science, University of Pittsburgh, Pittsburgh PA, USA

{yekeren, mzhang, kovashka}@cs.pitt.edu

Abstract

Visual reasoning is a challenging but important task that

is gaining momentum. Examples include reasoning about

what will happen next in film, or interpreting what actions

an image advertisement prompts. Both tasks are “puzzles”

which invite the viewer to combine knowledge from prior ex-

perience, to find the answer. Intuitively, providing external

knowledge to a model should be helpful, but it does not nec-

essarily result in improved reasoning ability. An algorithm

can learn to find answers to the prediction task yet not per-

form generalizable reasoning. In other words, models can

leverage “shortcuts” between inputs and desired outputs, to

bypass the need for reasoning. We develop a technique to

effectively incorporate external knowledge, in a way that is

both interpretable, and boosts the contribution of external

knowledge for multiple complementary metrics. In particu-

lar, we mask evidence in the image and in retrieved external

knowledge. We show this masking successfully focuses the

method’s attention on patterns that generalize. To properly

understand how our method utilizes external knowledge, we

propose a novel side evaluation task. We find that with

our masking technique, the model can learn to select useful

knowledge pieces to rely on.
1

1. Introduction

Visual reasoning is an important family of problems in-
cluding visual question answering (VQA) [5, 9, 12, 41]
and visual commonsense reasoning (VCR) [56]. The name
“reasoning” bears a flavor of classic AI and structured logic-
inspired inference steps; one might argue that a human ac-
cumulates knowledge as they mature, and they store this
knowledge in a metaphorical “knowledge base”, then re-
trieve information from it as needed. Indeed, some ap-
proaches to VQA/VCR do rely on structured, symbolic rea-
soning [4, 18, 44, 47]. However, in many domains state of
the art performance is achieved by end-to-end transformer
models [6, 27, 43] or other attention models [3, 16] which
do not perform structured reasoning. These models excel

1Our code is available at https://github.com/yekeren/Ads-KB.

Why	is	[person4]	pointing	
at	[person1]?

Why	is	this	answer	right?

What	should	I	do,	
according	to	this	
advertisement?	[action]

Why,	according	to	this	ad,	
should	I	take	this	action?	
[reason]

Parallel	Task
Reasoning	is	evaluated	
as	a	separate	task	with	

no	guarantee	for	
helping	the	main	task.

Does	this	person	have	
20/20	vision?

Single	Task
Reasoning	process	is	

not	explicitly	evaluated.

Side	Task
Reasoning	is	integral	to	
the	main	task	and	can	
be	evaluated	directly.

Which	of	the	following	comments	help	
to	understand	the	ad?
a) Nike	is	a	sportswear	company.
b) Nike	was	the	goddess	of	victory.

Match	the	image	with	a	description	
based	on	the	comment	you	choose

Figure 1: Visual reasoning tasks. Previous definitions ei-
ther oversimplify reasoning (as answering, top) or treat it
as a standalone task parallel to answering (middle). One of
our contributions is a new evaluation side task (bottom) that
checks the decisions made by our model, i.e. which knowl-
edge pieces it selected to complete the answering task.

when sufficient labeled data is available, and potentially a
large pool of image-text data in a disjoint domain, because
they can effectively learn to mimic patterns in the data.

However, we highlight two limitations of existing meth-
ods for reasoning tasks. First, even though human reasoning
is grounded in knowledge accumulated over the years from
multiple sources, most methods just leverage data from the
human-curated target dataset. Second, these models often
learn shortcuts which do not generalize well; for example,
they might learn to perform string or object matching be-
tween question/image and answers, rather than reasoning
about properties and causality.

We propose a mechanism to effectively incorporate ex-
ternal knowledge for a task that especially requires it. To
properly leverage the benefit that external knowledge can
provide, we enable the model to filter irrelevant knowledge,

Ye, Keren, Mingda Zhang, and Adriana Kovashka. "Breaking shortcuts by masking for robust visual reasoning.” WCACV 2021



Evaluations

Automated evaluation methods are all fallible - fail in almost deterministic 
ways. 


Current methods: repurposing of NLG metrics 


➡Reference evaluations sampled from humans


➡Procedure: Intersection of vocabulary 


➡Challenges with human biases in reasoning 



Challenges with labelling

Question: Is this legal or illegal?

Ground Truth Answers: 
legal (6), illegal (4)

Generation: legal

Question: In which country are the
transportation regulations loose
enough to allow vehicles like these?
Ground Truth Answers: 
india (8), china (2)

Generation: england

Question: What nationality is this food?

Ground Truth Answers: 
american (4), mediteranian (2),  
greek (2), asian (2) 
 
Generation: italian

Question: How long does it take to cook?

Ground Truth Answers: 
45 minutes (4), 20 minutes (2), 25
minutes (2), minute (2)

Generation: 1 hour



Multimodal LMs



Transformer backend!

Visual information as 
tokens! 


Transformer backbone




What happens with the images?

Image is split into sequence of patches


Which that then embedded using a pretrained vision 
model 


Goal - consider every input as tokens 



Pre-trained over a variety of data sources

Models are usually pretrained over a variety of tasks and tokens 


- Language related data separately 


- Language and Vision related data 


- Vision tasks reformulated as with a language prompt and language like 
outputs  



Unified model for Answers and 
Explanations



Premise

Agnostic explanation methods are usually not grounded in the task 
descriptions


Separate models usually for explaining the behaviours of the models tend to 
be generate usually disparate explanations




Synthetic prompt tokens

3 settings settings for any given image: 


• Q→A: Answer prediction


• QA→E: Explanation generation conditioned on the answer 


• Q→AE: Joint answer and explanation generation for a given question


This setup allows the model to enhance the signal of “answers” associated 
with 



Illustration



Synthetic prompt tokens

Free form commands with “why is X the answer” do not seem to generalise 
with answers across domains due to the inherent ambiguities


Synthetic symbol with a uniform semantics usually allows for consistent 
outputs  



Complementarity of explanations 

Key takeaway: Explanations help with prediction of consistent and robust 
labels 



Unified model allows for better explanations

Key takeaway: dataset centric particularities are usually important as 
annotations are conducted under varied settings.



Question: What time of year was the
picture likely taken?  
Answer: fall

Ground Truth Explanations:
1) The child is wearing a long sleeve
shirt and pants but no coat. 
2) There are brown leaves on the
sidewalk. 
3) The time is fall.

Generated Explanations:
Beam Search: The time is fall. 
Top-k: The leaves are dropping. 
Nucleus: The leaves are fall. 
Typical: The leaves are brown and
dry.

Question: Which two words were said by both the
person in black and the person in white here?  
Answer: i do

Ground Truth Explanations:
1)  The people got married. 
2) There is a wedding cake. the smiling people in
the suit and white dress are the bride and groom. 
3) The photo was obviously taken at a wedding with
the bride and groom at the center of it. it is
traditional that they say "i do" when taking their
vows.

Generated Explanations:
Beam Search: They are at a wedding. 
Top-k: The words are ""i"".". 
Nucleus: The person in black and the person in
white are in a wedding. 
Typical: The people are just after getting married.

Question: What is Person1 going to do?  
Answer: Person1 is going to lead a business
meeting.

Ground Truth Explanation:
Person1 is at the head of a table of men in
suits.

Generated Explanations:
Beam Search: Person1 is sitting at the head
of the table, which is where leaders sit. 
Top-k: Person1 appears to be in charge of the
board room. 
Nucleus: Person1 is sitting at the head of the
table, which is where leaders sit during
business meetings. 
Typical: Person1 is sitting at the head of the
table, which is often the place for leaders.

Question: What is Person1 doing?  
Answer: Person1 is turning the wheel.

Ground Truth Explanation:
Person1 has his hands on the wheel
and is exerting force.

Generated Explanations:
Beam Search: He has his hands on the
wheel. 
Top-k: Person1 is hunched over and
has his hands on the wheel. 
Nucleus: Person1 is leaning over the
wheel and has his hand on it. 
Typical: The man is leaning forward
and his hand is on the wheel.

Person1



Conclusions

Training with explanations helps robustly task related predictions


Synthetic tokens with well defined task related semantics enrich multi-task 
capabilities 


A unified model capable of prediction and explaining the predictions is 
better grounded in the task and dataset related intricacies. 



Hiring …

Robust inference with probabilistic answer set program scaffolds for 
large language models 

2 post docs 


Probabilistic programming 


ASP/ILP/LP


Hosted at the Alan Turing Institute 



Communicating explanations

Important role of human comprehension 


Human comprehension is most effective when it is multimodal 


We learn with multimodal signals


Changing human beliefs with explanations is difficult 

Social AI and the Challenges of Human-AI Ecosystem, Pedreschi et al 2022



Are words equally surprising in audio 
and audio-visual comprehension?

PM | Claudia (Ye) Zhang | Gabriella Vigliocco

University College London


Psychology and Language 
Sciences



Expectation based theories of sentence comprehension

Sentence processing difficulty is influenced by the predictability of 
upcoming lexical material in context (Levy, 2008).


Previous research has typically examined the impact of the following types 
of context: extra-sentential information (e.g., discourse), previous sets 
of lexical items, and the current lexical item.


Humans rely on their accumulated linguistic knowledge, including complex 
grammatical structures and contextual understanding, to process sentences 
incrementally.



Surprisal theory

Quantifies the unexpectedness of linguistic events


An information theoretic measure


Predicts processing difficulty as a function of word probability (Hale, 2001) 


Cognitive effort (linguistic unit)  Surprisal (linguistic unit) ∝



Operationalisation of surprisal

Surprisal is typically calculated based on the likelihood of encountering a 
linguistic unit under the preceding context.


This has been done previously using:


- corpus-based frequencies 


- using close tasks


- information theoretic estimates (such as entropy) 


- language models



Operationalisation of surprisal

Language models are highly reliable for measuring surprisal, and have been 
found to strongly correlate with both behavioral and EEG-based measures 
of cognitive effort (Michaelov & Bergen, 2020; Meister et al., 2021).





Estimated using language models

surprisal(lexical unit) = − log pθ(lexical unit | lexical context)



n-gram based models 
The dog that chased the cat ate …

The dog that chased the cat ate …

The dog that chased the cat ate …

The dog that chased the cat ate …

The dog that chased the cat ate …

n = 2

n = 3

n = 4

n = 5

n = 6



Long ranged dependencies
The dog that chased the cat ate …

The dog that chased the cat ate …

The dog that chased the cat ate …

The dog that chased the cat ate …

The dog that chased the cat ate …

n = 2

n = 3

n = 4

n = 5

n = 6



Transformers based models
• Capture higher order correlations (Sinha et 

al, 2021)


• Access to infinite context (for our datasets) 


• Capable of capturing very-long 
dependencies


• We consider two instances of these models: 


✦GPT2: a generative model that predicts 
the next token for a given context. 


✦BERT: a predictive model that is trained 
in a cloze style word prediction setup. 



Empirical validation of surprisal theory
Surprisal estimates from language models have been shown as a good 
predictor of language effort during language processing. These include: 


- strong correlation with reading times (Smith and Levy 2013) 


- word fixations were longer when words had high surprisal values 
(Demberg and Keller 2008) 


- significant associated with reading times in eye-tracking data (Futrell 
et al. 2019) 


- highly correlated with neurophysiological signals



Neurophysiological signals and surprisal

ERP studies typically examine the brain's response to words or 
linguistic stimuli with different levels of predictability or 
unexpectedness. 


ERP peaking negatively at ≈400ms at the central parietal areas 
during language processing tasks.


Several works have shown the demonstrated the relationship 
between N400 and semantic processing: 


- Frank et al. 2015: Surprisal (as obtained from LM)  predicts 
n400. 


- Michaelov et al. 2021: Surprisal estimates from larger 
models are better predictors of N400.

−4μV

6μV



Audiovisual language

Language is embedded within a rich multimodal 
environment that includes gestures, facial expressions, 
body movements, visual cues, and other nonverbal 
elements 


Multimodal information provides additional context and 
meaning, making communication more effective (Ankener 
et al., 2018; Grzyb et al., 2022; Zhang et al., 2021)


Multimodal information, such as pitch prosody, meaningful 
gestures and informative mouth movements, modulates 
the N400 signal especially for high surprisal words (Zhang 
et al., 2021 and Baumann & Schumacher, 2012) 



Audiovisual communication

Hand gestures

Facial expressions

Head movements

Iconic gestures

Affective gestures

Illustrative gestures

. . . 



Audio only vs Audiovisual communication

Previous research has mostly focussed on characterising comprehension 
difficulty through experiments based on lexical information alone. 


Information theoretic frameworks have typically focused on information 
content propagated through a single channel.


However, most natural modes of communication involves the contribution 
from multiple modalities




This work

We present a controlled study to investigate the effects of visual signals 
(seeing the speaker) on language comprehension 


We compare the effects of audio-only and audio-visual settings using the 
same language stimuli and analyse the changes in ERP signals  


We then evaluate the effectiveness of surprisal estimates, using different 
language models with varying lexical context windows, in explaining 
cognitive effort in both unimodal and multimodal conditions 




Stimuli

• 103 naturalistic passages carefully sampled passages 
from BNC


• Recorded by a native English-speaking actress 


• Natural prosody and facial expressions.



Participants 

Two experimental conditions: 


- Audio-only setting - where participants only listen to the speaker


- Audio-visual setting - where participants both listen to and watch the speaker




Data

EEG data was collected for both group


Identical lexical information across both settings



Surprisal estimates

We obtain surprisal estimates using log-probabilities through:


- n-gram language models


- we vary the context windows and consider 2,3,4,5 and 6-gram models


- transformer based language models  


- access to infinite lexical context 



Comparing models
Baseline models: only consist of information from the location of EEG 
electrodes (ROI).


Participant, passage and electrode as random intercepts to control for 
individual behavioural effects.


We consider both additive and multiplicative models of surprisal 


We fit a use linear mixed-effects model and consider the difference between 
the akaike information criterion ( AIC) of the models with surprisal and the 
baselines. 

Δ



Observations: N400 signals across the experiments 

• Weak correlation 


• If the lexical information were the most significant 
contributing factor, we would expect a stronger 
correlation between audio-only and audio-visual 
conditions since both experiments involve the same 
verbal stimuli. 


• This indicates that multimodal signals significantly 
modulate N400 (more than lexical information) 
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Audio only: prefer models with longer contexts 

• The largest reduction in AIC compared to 
the baseline model is observed with GPT-2. 



Audio only: prefer models with longer contexts 

• The largest reduction in AIC compared to 
the baseline model is observed with GPT-2. 


• While the 2-gram model shows the smallest 
reduction in AIC. 



Audio-visual: prefer models with shorter contexts 

• 2-gram model shows the largest reduction 
AIC



Audio-visual: prefer models with shorter contexts 

• 2-gram model shows the largest reduction 
AIC


• On the other hand, GPT-2 which has access 
to the largest context window, shows lower 
reduction in AIC.



Reversal of trend
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Replication

We observe similar behaviours in a setup 
where the audio visual stimuli consist of 
passages that are sampled from more 
realistic corpus.  



Discussion

We replicate recent findings of language models with larger context windows 
to have better correlations with neurophysiological signals of cognitive effort 
in the unimodal setting (Michaelov & Bergen, 2022). 


However, Language model context window plays a significant role in 
predicting N400 under two different conditions with the same lexical stimuli. 


This study raises important questions on the importance of including 
multimodal channels of communication in information theoretic frameworks



Key takeaways
Under similar lexical stimuli, we observe that multimodal cues significantly 
modulate the N400 signals


Cognitive effort differs significantly between multimodal (audio visual) and 
unimodal (audio only)  settings


Local lexical context plays a significant role in cognitive processing in a 
multimodal environment


Communicating explanations or interpretations perhaps needs to take 
multimodality in to effect? 


