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Stopped exercising

INFUSING THE 
SOCIAL SCIENCES

Symptom Cause Prob

Weight gain

Fatigue

Nausea

Weight gain, 
fatigue, nausea

Mononucleosis

Stomach virus

Pregnancy

80%

50%

50%

15%

THE BEST 
EXPLANATION?

1) Stopped exercising
Mononucleosis
Stomach virus; or

2) Pregnancy

S. J. READ, A. MARCUS-NEWHALL, EXPLANATORY COHERENCE IN SOCIAL EXPLANATIONS: A PARALLEL 
DISTRIBUTED PROCESSING ACCOUNT, JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY 65 (3) 
(1993)



INFUSING THE 
SOCIAL SCIENCES



WHAT ARE
THE KEY 
LESSONS?



EXPLANATIONS ARE 
CONTRASTIVE

“The key insight is to recognise that one does not explain events per 

se, but that one explains why the puzzling event occurred in the 

target cases but not in some counterfactual contrast case”

DENIS HILTON: CONVERSATIONAL PROCESSES AND CAUSAL EXPLANATION, 
PSYCHOLOGICAL BULLETIN. 107(11):65-81, (1990)
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CONTRASTIVE EXPLANATION: A STRUCTURAL-MODEL APPROACH. 
T. MILLER, KNOWLEDGE ENGINEERING REVIEW, 36 E14: 2021
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“Causal explanation is first and 

foremost a form of social 

interaction. The verb to explain is 

a three-place predicate: 

Someone explains something to 

someone. Causal explanation 

takes the form of conversation 

and is thus subject to the rules of 

conversation.‘’ 

[Emphasis original]

DENIS HILTON: CONVERSATIONAL 
PROCESSES AND CAUSAL 
EXPLANATION, PSYCHOLOGICAL 
BULLETIN. 107(11):65-81, (1990)

EXPLANATIONS ARE 
SOCIAL



SOCIAL EXPLANATION

A GROUNDED INTERACTION PROTOCOL FOR EXPLAINABLE ARTIFICIAL INTELLIGENCE. MADUMAL, P.; MILLER, T.; SONENBERG, L.; AND 
VETERE, F. IN PROCEEDINGS OF AAMAS 2019, 2019.



EXPLANATIONS ARE 
SELECTED

 The day was exceptionally 
clear and Mr. Jones told his friends at the office that he would drive along 
the shore to enjoy the view.”

D. KAHNEMAN AND A. TVERSKY, THE SIMULATION HEURISTIC, IN JUDGMENT UNDER 
UNCERTAINTY: HEURISTICS AND BIASES, NEW YORK: CAMBRIDGE UNIVERSITY PRESS, 1982.



E X P E R I E NCE
APPLYING 
THESE INSIGHTS



OUR EXPERIENCE

I N S I G H T S T E C H N I Q U E S D O M A I N S

C O N T R A S T I V E  
E X P L A N A T I O N

T E C H N I Q U E S D O M A I N S

C A U S A L I T Y

I N T E R A C T I O N

T E M P O R A L  S E L E C T I O N

H U M A N  S T U D I E S

R E I N F O R C E M E N T  
L E A R N I N G

A I  P L A N N I N G

M A C H I N E  L E A R N I N G

C O M P U T E R  V I S I O N

M U L T I - A G E N T  
S Y S T E M S

S E A R C H  A N D  R E S C U E  
P L A N N I N G

C R E D I T  S C O R I N G

M E D I C A L  I M A G I N G

I L L E G A L  F I S H I N G

G A M E  P L A Y I N G
This Photo by Unknown Author is licensed under CC BY-ND

https://policyoptions.irpp.org/magazines/january-2020/technology-isnt-shaping-work-the-way-we-think/technology-isnt-shaping-work-the-way-we-think/
https://creativecommons.org/licenses/by-nd/3.0/


EXPERT DECISION MAKING



IS EXPLAINABLE 
AI DEAD?



A QUICK 
SURVEY





BLUSTER VS. PRUDENCE

…
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RECOMMENDATION-DRIVEN
EXPLAINABLE AI

HYPOTHESIS-DRIVEN
EVALUATIVE AI
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JACOVI, A., MARASOVIĆ, A., MILLER, T., & GOLDBERG, Y. FORMALIZING TRUST IN ARTIFICIAL INTELLIGENCE: PREREQUISITES, CAUSES AND GOALS OF 
HUMAN TRUST IN AI. IN PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY  (FAccT), pp 624-635, 2021.
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SELF-
EXPLANATION IN 
DECISION 
MAKING



SELF EXPLANATION

EXPLAINABILITY

SELF-EXPLANATION

UNDERSTAND 
MODEL/OUTPUTS

VERIFY



ABDUCTIVE REASONING AND VERIFICATION

PROCESS

1. Observe event

2. Generate hypotheses

3. Judge plausibility

4. Resolve explanation

5. Extend explanation

REQUIREMENTS

PSYCHOLOGY AND AI AT THE CROSSROADS: HOW MIGHT COMPLEX SYSTEMS EXPLAIN THEMSELVES? R. HOFFMAN, T. MILLER, W. CLANCEY 
AMERICAN JOURNAL OF PSYCHOLOGY, 135(4), pp. 365-378, 2022.



PROCESS REQUIREMENTS
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PSYCHOLOGY AND AI AT THE CROSSROADS: HOW MIGHT COMPLEX SYSTEMS EXPLAIN THEMSELVES? R. HOFFMAN, T. MILLER, W. CLANCEY 
AMERICAN JOURNAL OF PSYCHOLOGY, 135(4), pp. 365-378, 2022.
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DECISION 
SUPPORT = 
VERIFICATION



EVALUATIVE AI

?? ? ?

+/- +/- +/- +/-

EVALUATIVE AI

EVIDENCE TO 
SUPPORT 

VERIFICATION



Patient reports itchiness and bleeding. 
Lesion has changed colour.
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IS EXPLAINABLE 
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KEY TAKEAWAYS

EXPLAINABLE AI HOWEVER ….

Explai nable  dec i si on ai ds  don’t  real ly  

i mproved dec i si on maki ng (muc h)

Some false  assumpt i ons

People look to machine recommendations

People look to machine explanations

Intuition needs to be overridden

Evaluat i ve AI  provi des t he framew ork

Explai nable  AI  i s  dead!  . . .

… Long l i ve  explai nable  AI!

Support the human decision-making loop

Build on expertise and expert intuition

Foc us on t he user  and t hei r  t asks/role s
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