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Problem

* It is important to identity the internal representations that DNN implicitly
learned for DNN interpretability.

Our Focus in XAI

- What happens inside of DNN?
- Which representations did the
model learn?
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Problem

* It is important to identity the internal representations that DNN implicitly

learned for DNN interpretability.

* Understanding “Coherent properties” help us to explain and interpret the

general behaviors of the model.
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Problem

* It is important to identity the internal representations that DNN implicitly

learned for DNN interpretability.

* Internal representations

Implicitly learned concepts that multiple instances share in the internal feature space.
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How can we find the
internal representations

in DNNs?




Challenges

« How can we reveal learned representations in the intermediate feature space of DNN?

* Mostly, human supervision is necessary.

» Substantial cost [Manual method]

* No guarantee for alignment detect representations
by utilizing supervision
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- Network Dissection: Quantifying Interpretability of Deep Visual Representations, 2017
- Interpretability beyond feature attribution quantitative testing with concept activation vectors, 2018
- Best of both worlds: local and global explanations with human-understandable concepts, 2021



Challenges

« How can we reveal learned representations in the intermediate feature space of DNN?

* Mostly, human supervision is necessary.
* Substantial cost

* No guarantee for alignment

Without supervision,
-——— can we still uncover the

: learned representations?

data DNN

- Network Dissection: Quantifying Interpretability of Deep Visual Representations, 2017
- Interpretability beyond feature attribution quantitative testing with concept activation vectors, 2018
- Best of both worlds: local and global explanations with human-understandable concepts, 2021



Overview

* How can we reveal learned representations in the intermediate feature space of DNN
without human supervision?

e Our work

1. Interpreting Internal Activation Patterns in 2. Understanding Distributed Representations of
Deep Temporal Neural Networks by Finding Concepts in Deep Neural Networks without

Prototypes (KDD-21) Supervision (AAAI-24)
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Challenges

* How can we reveal implicit representations in the intermediate feature
space of DNN? =» Human supervision (semantic labels) may be helpful.

 But, in time series data, there is usually no labels for representatives.

It is classified to the

———————— What is it?
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Time series




Challenges

* In time series data, there is usually no labels for representative patterns.

* Representative examples (Prototypes) help to understand captured
patterns in data and summarize the distribution of patterns.

* How can we find appropriate representative examples in time series?
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Overview - Prototypes of Temporally Activated Patterns

* Find appropriate representative temporal patterns by selection prototypes

from highly activated subsequences.

Temporal Convolutional Neural Network
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Subsequence Extraction

* Given a trained CNN for time series classification, find temporal indices that have highly

activated nodes from data. .
® Temporally Activated Pattern

» Each temporal index has a subsequence on its receptive field. (TAP)

Temporal Convolutional Neural Network
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Subsequence Extraction

* Given a trained CNN for time series classification, find temporal indices that have highly

activated nodes from data. .
§> Temporally Activated Pattern

» Each temporal index has a subsequence on its receptive field. (TAP)

Temporal Convolutional Neural Network
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Prototype Selection

« How can we choose good examples (prototypes) to represent temporal patterns from
Temporally Activated Patterns (TAPs)?

* Efficient greedy algorithm to select prototypes from high dimensional data

J(S) : objective

L. 2 k : kernel function
maximize J,(S) = IS Z l,)’,) — e 2 k(x;,
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n : the number of | i€[n],jes lJGS Kernel evaluates
the total samples the Similarity

Distribution of all the samples
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Examples are not enough, learn to criticize! Criticism for Interpretability, 2016



Feature-based Similarity

« Can we utilize the feature vectors in the internal nodes during prototype selection?

« Temporally Activated Unit (TAU) : the feature vector at the specific temporal point

Temporal Convolutional Neural Network
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Gram Kernel Matrix

* We propose to use the Gram kernel matrix using Temporally Activated Units.

2 1 Kernel evaluates
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Prototype Selection in the feature space

» We propose to select prototypes with feature activations from the internal nodes of the

neural network.

* We use the Gram kernel matrix constructed by feature vectors to use the greedy selection
algorithm =¥ Prototypes of Temporally Activated Patterns (PTAP)
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Effectiveness of PTAP

* The Gram kernel matrix is useful to capture learned temporal patterns.

* What is a good prototype for temporal data?
1. Each prototype group must have a coherent pattern.

Ours
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* Radial basis function (RBF) kernel: exp(—2yl|x; — x{|3) with large y



Effectiveness of PTAP

* The Gram kernel matrix is useful to capture learned temporal patterns.

* What is a good prototype for temporal data?
1. Each prototype group has a coherent pattern.
2. Prototypes have different shapes from each other.
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* Radial basis function (RBF) kernel: exp(—2yl|x; — x{|3) with large y



Effectiveness of PTAP

* The results of prototype selection with the Gram kernel matrix
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Challenges

* How can we reveal implicit representations in the intermediate feature
space of DNN? =» Group-level interpretation

Irrelevant instances are

located nearby. Why?

* [Naive approach]
K-Nearest Neighbors target KNN
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Challenges

* [Challenge — complex internal space]

DNN utilizes different information from data according to the local region of the internal space.

* [Idea] ( = Configuration )
Evaluate the difference in neuron activation states!
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Each line represents a boundary
where the activation state
changes for each neuron.




Distributed Representations

* Distributed Representations
each concept that the model learned is represented by multiple internal neurons.

* Neuron activation states may be highly related to the concepts in DNNSs.
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Learning distributed representations of concepts, 1986
Net2vec: Quantifying and explaining how concepts are encoded by filters in deep neural networks, 2018



Overview - Relaxed Decision Region

 Find a principal configuration where a target and relevant samples share
learned representations by using configuration information.

Relaxed
Decision Region
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Configuration

* Why do we focus on neuron activation to capture representations of concepts?

» Configuration
* a binary vector that represent activation states of neurons
» Configuration determines the mapping of DNN in the local region [3]

Configuration Data space | ]
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_________ Decision Region
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There are too many regions inside DNN...

Can we relax regions to identify coherent
representations?
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- Exact and consistent interpretation for piecewise linear neural networks: A closed form solution, 2018



Configuration Distance

e Definition

Given an instance x, X € X, the Configuration distance for a set of neurons N is defined

as follows:
de(x, %) = dy(c" (x), N (%))

where dy denotes the Hamming distance.
Data space
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Algorithm

* Select t principal neurons to construct an internal region that exhibits
strong coherence with a target instance x, while ensuring distinctiveness
from irrelevant instances.

min Bgldu(c" (x),¢,)] - Byldu (e (v), cp)]

c,€{0,1}t ™ |
VoN | 5)

Exhibit strong coherence with the positive set, |
while ensuring distinctiveness from the negative set.




Algorithm

* positive set S: automatically collect k-nearest neighbors based on d
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Algorithm

* In greedy method, we sequentially select configuration that minimize
Equation (D).

target
instance

.‘ [ I logit
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Experiments
* Finding Unlabeled Subclasses

Mini-ImageNet Flowers

Different RDRs capture different learned concepts

a

without prior knowledge of sublabel information.




Experiments

* Reasoning Misclassified Classes

Mini-ImageNet ImageNet-X

[ [Truth] solar dish ] 64.3%

[Truth] frying pan Annotated Failure Type:
[Pred] aircraft carrier

[Pred] ear - Close up of raw fries on the frying pan (larger)

aircraft carrier

[Truth] French bulldog 67.3% 16.3% [Truth] reel Annotated Failure Type:
[Pred] Saluki [Pred] carousel - a kid holding the reel (pose)
Saluki komondor
‘......» : The target sample has similar properties with Saluki

due to its long, thin legs



IG Grad-CAM RDR
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Experiments

* Comparison with other XAI methods

target instances in RDR

Saluki . parallel bars Saluki Gordon_setter Saluki Saluki komondor

IR 8 zh EX

Purity Entropy

VGG RSN MBN2 | VGG RSN MBN2

RDR 0351 0408 0346 | 1527 1372 1.531
KNN¢ 0.303 0.328  0.329 1.588 1497  1.498
CARc 0.022 0.038 0.036 | 2.264 2.153  2.527
CAVp 0.314 0387  0.323 1.549 1416 1.575
RI 0.045 0.056 0.056 | 2.161 1971  2.369

RDREg,. | 0241 0.252 0.303 1.76  1.779 1.76
KNNgyu. | 0183 0.166  0.275 1.835 1.862 1.791
CARg,. | 0.039 0.037 0.037 | 2272 2.17 2.476
CAVEye 0.207 0.240  0.283 1.811 1.787 1.745
RDRcos | 0309 0307  0.346 1.613 1.7 1.628
KNN¢cos | 0250 0.232 0.283 1.672 1.771 1.635
CARcos 0.042 0.027 0.036 | 2251 2.14 2.576
CAVios 0.261 0283 0.274 1.596 1.734  1.651

1 T
Purity = T Z l[yt=§]
t=1

Entropy = Z —Py *log Py
y: Py #0

where P, = LS 1, _1 (empirical distribution).



Conclusion

[Goal]

* Identify the internal representations that DNN implicitly learned for DNN interpretability
without supervision.

[Prototypes of Temporally Activated Patterns]

* We propose a new framework to interpret decision-making process of a temporal CNN
classifier by finding representative temporal patterns detected by the networks.

[Relaxed Decision Region]

* Our Relaxed Decision Region framework detects a principal configuration where a target and
relevant samples share learned representations by using configuration information.
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