Understanding Learned Representations in Deep Neural Networks without Supervision

Wonjoon Chang

Korea Advanced Institute of Science and Technology (KAIST), South Korea

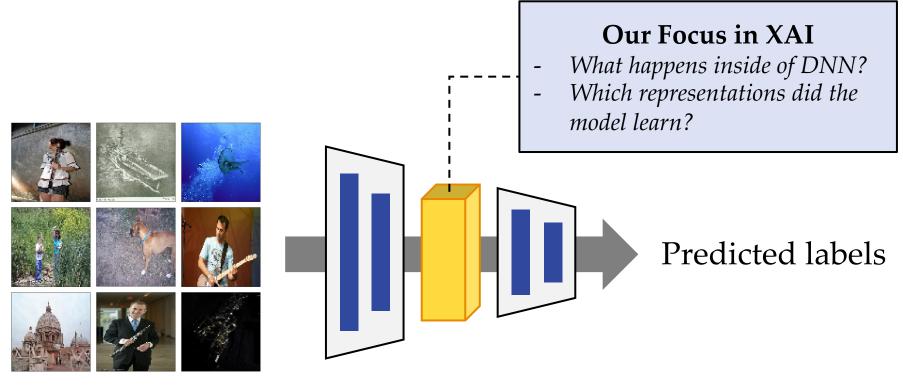
Statistical Artificial Intelligence Lab (SAILab)

one_jj@kaist.ac.kr

2024.03.21

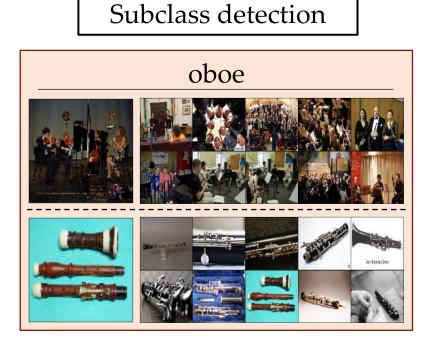
Problem

• It is important to identify the *internal representations* that DNN implicitly learned for DNN interpretability.



Problem

- It is important to identify the *internal representations* that DNN implicitly learned for DNN interpretability.
- Understanding *"Coherent properties"* help us to explain and interpret the general behaviors of the model.



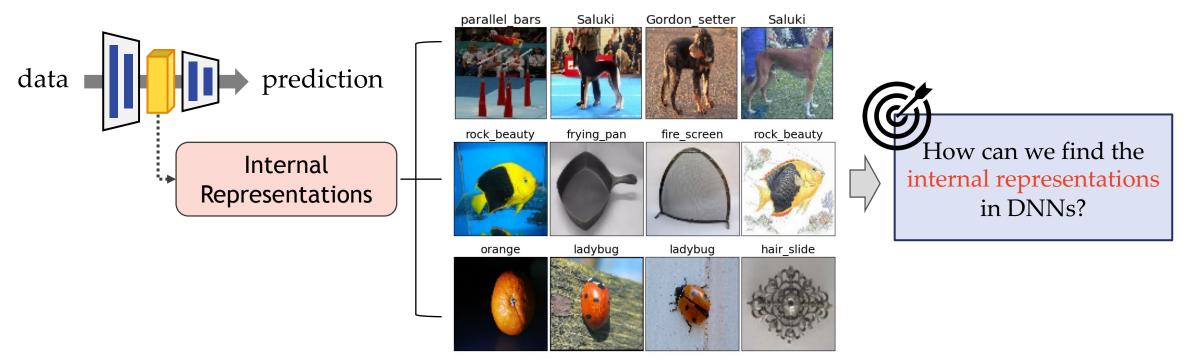
[Ground Truth] French bulldog

> [Prediction] Saluki

Problem

- It is important to identify the *internal representations* that DNN implicitly learned for DNN interpretability.
- Internal representations

Implicitly learned concepts that multiple instances share in the internal feature space.

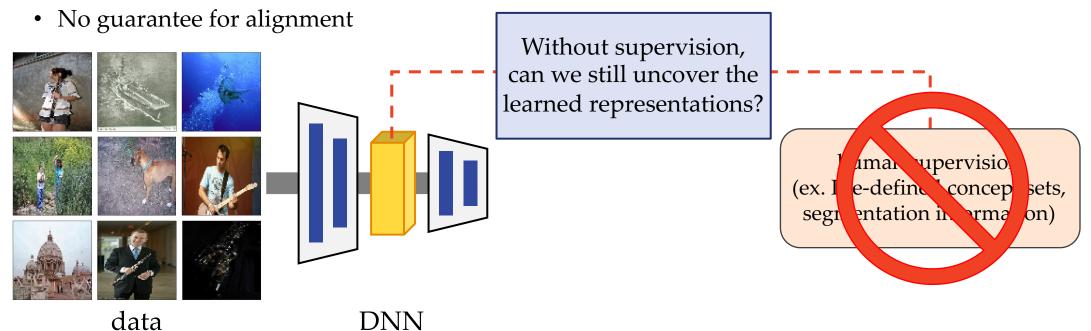


Challenges

- How can we reveal learned representations in the intermediate feature space of DNN?
- Mostly, human supervision is necessary.
 - Substantial cost
 - No guarantee for alignment • Wanual method] • detect representations • by utilizing supervision • human supervision • ex. Pre-defined concept sets, • segmentation information) • data DNN Feature map
- Network Dissection: Quantifying Interpretability of Deep Visual Representations, 2017
- Interpretability beyond feature attribution quantitative testing with concept activation vectors, 2018
- Best of both worlds: local and global explanations with human-understandable concepts, 2021

Challenges

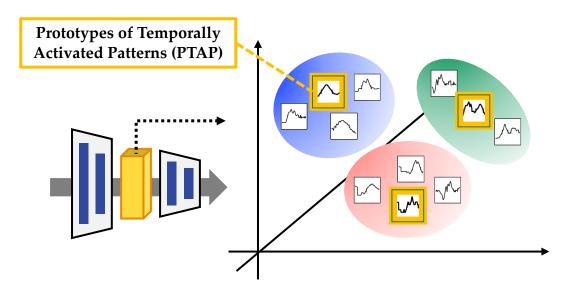
- How can we reveal learned representations in the intermediate feature space of DNN?
- Mostly, human supervision is necessary.
 - Substantial cost



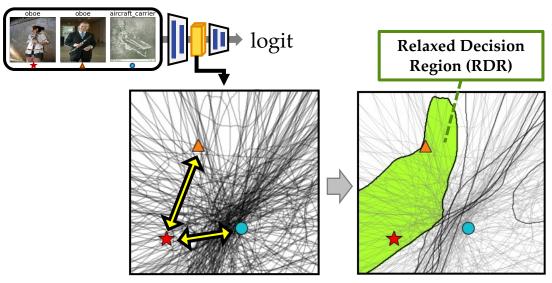
- Network Dissection: Quantifying Interpretability of Deep Visual Representations, 2017
- Interpretability beyond feature attribution quantitative testing with concept activation vectors, 2018
- Best of both worlds: local and global explanations with human-understandable concepts, 2021

Overview

- How can we reveal **learned representations** in the intermediate feature space of DNN without human supervision?
- Our work
- 1. Interpreting Internal Activation Patterns in Deep Temporal Neural Networks by Finding **Prototypes** (KDD-21)



2. Understanding Distributed **Representations of Concepts** in Deep Neural Networks without Supervision (AAAI-24)



Interpreting Internal Activation Patterns in Deep Temporal Neural Networks by Finding Prototypes

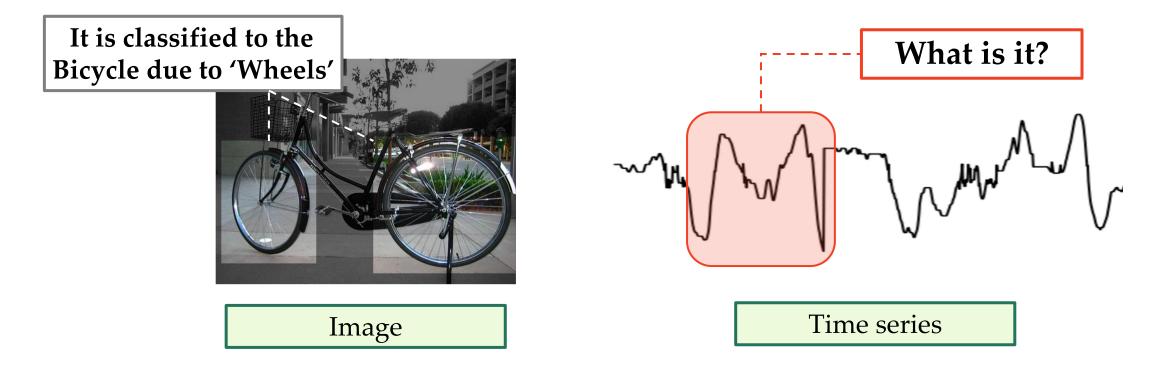
Sohee Cho^{*}, Wonjoon Chang^{*}, Ginkyeng Lee, Jaesik Choi

Korea Advanced Institute of Science and Technology (KAIST), South Korea Statistical Artificial Intelligence Lab (SAILab)

* Equal Contribution

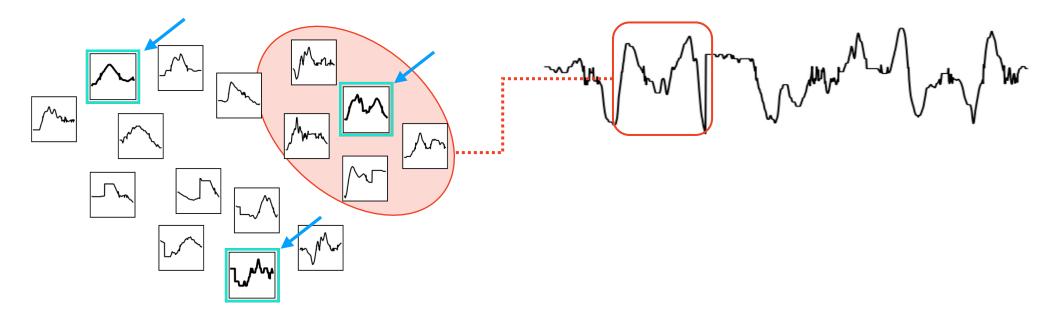
Challenges

- How can we reveal implicit representations in the intermediate feature space of DNN? → Human supervision (semantic labels) may be helpful.
- But, in time series data, there is usually no labels for representatives.



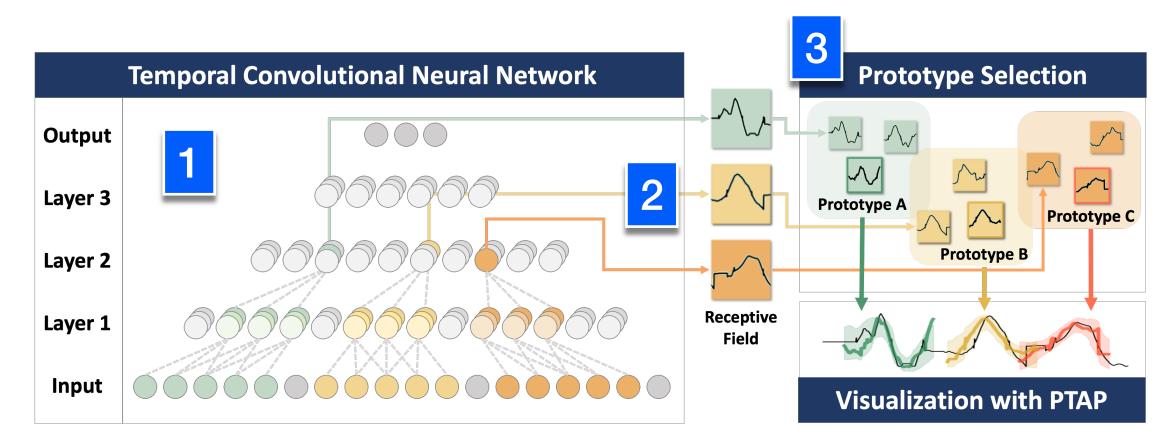
Challenges

- In time series data, there is usually no labels for representative patterns.
- Representative examples (Prototypes) help to understand captured patterns in data and summarize the distribution of patterns.
- How can we find appropriate representative examples in time series?



Overview – Prototypes of Temporally Activated Patterns

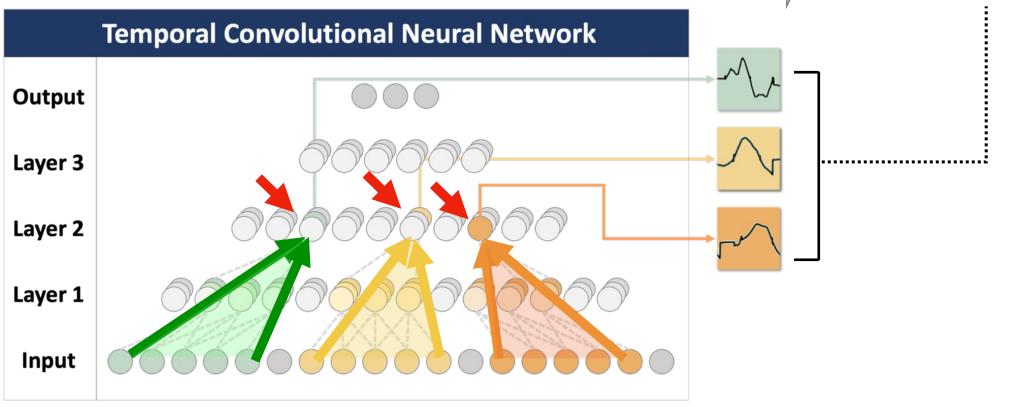
• Find appropriate representative temporal patterns by selection prototypes from highly activated subsequences.



Subsequence Extraction

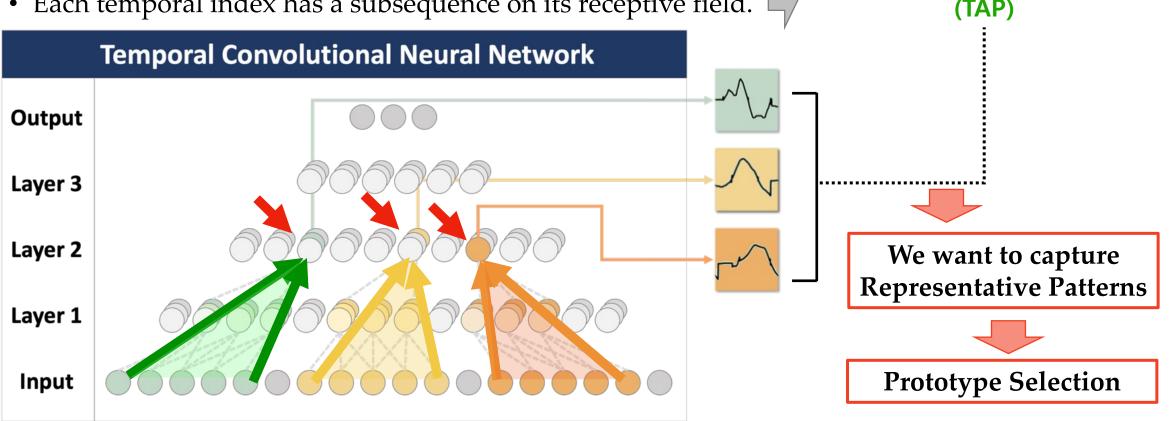
- Given a trained CNN for time series classification, find temporal indices that have **highly activated** nodes from data.
- Each temporal index has a subsequence on its receptive field.

Temporally Activated Pattern (TAP)



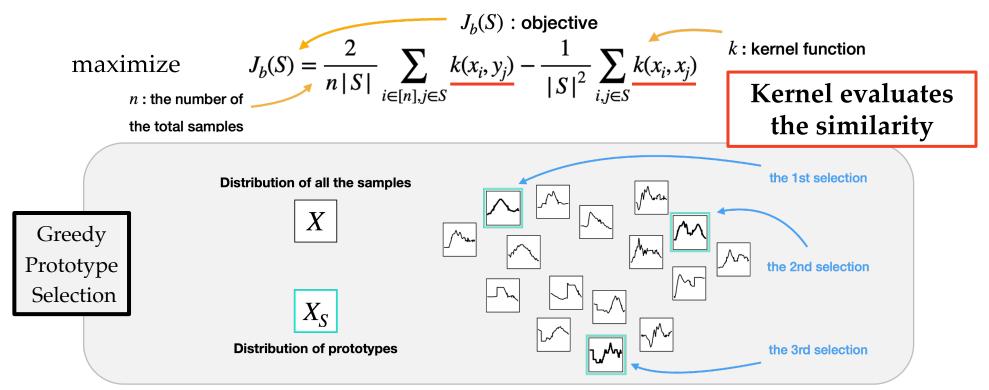
Subsequence Extraction

- Given a trained CNN for time series classification, find temporal indices that have **highly activated** nodes from data. **Temporally Activated Pattern**
- Each temporal index has a subsequence on its receptive field.



Prototype Selection

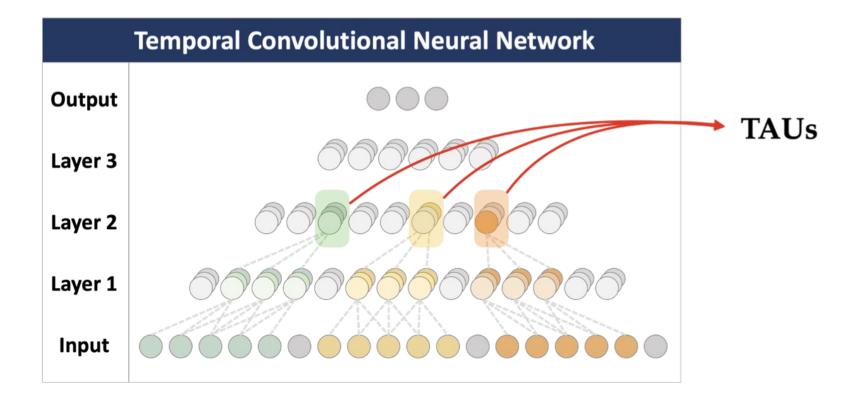
- How can we choose good examples (prototypes) to represent temporal patterns from Temporally Activated Patterns (TAPs)?
- Efficient greedy algorithm to select prototypes from high dimensional data



- Examples are not enough, learn to criticize! Criticism for Interpretability, 2016

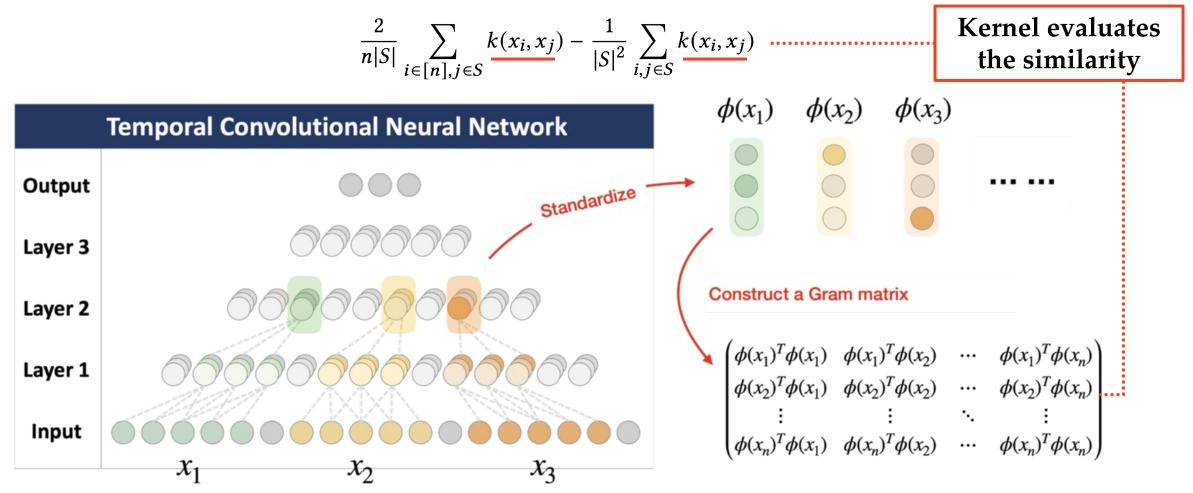
Feature-based Similarity

- Can we utilize the feature vectors in the internal nodes during prototype selection?
- Temporally Activated Unit (TAU) : the feature vector at the specific temporal point



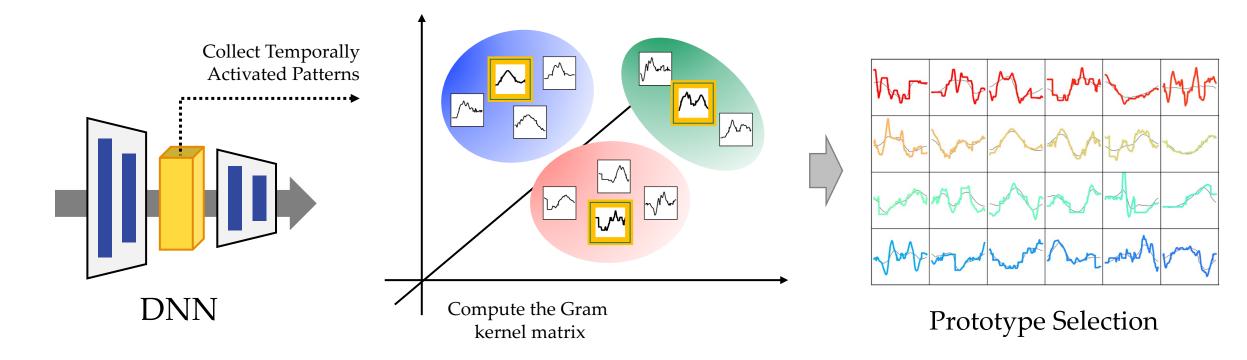
Gram Kernel Matrix

• We propose to use the **Gram kernel matrix** using Temporally Activated Units.



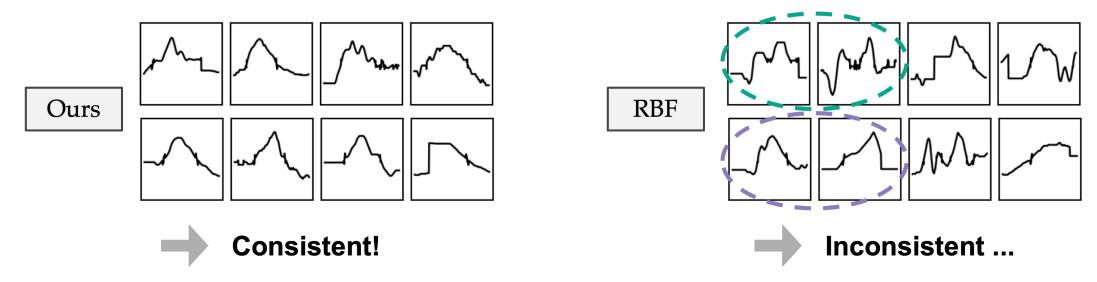
Prototype Selection in the feature space

- We propose to select prototypes with feature activations from the internal nodes of the neural network.
- We use the Gram kernel matrix constructed by feature vectors to use the greedy selection algorithm → Prototypes of Temporally Activated Patterns (PTAP)



Effectiveness of PTAP

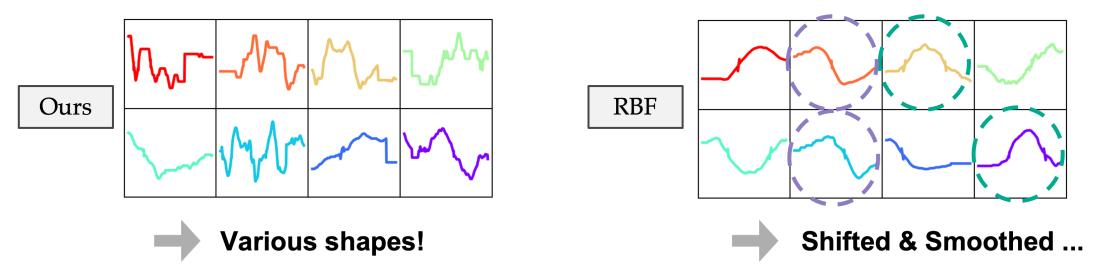
- The **Gram kernel matrix** is useful to capture learned temporal patterns.
- What is a good prototype for temporal data?
 - 1. Each prototype group must have a coherent pattern.



* Radial basis function (RBF) kernel: $exp(-2\gamma ||x_i - x_j||_2^2)$ with large γ

Effectiveness of PTAP

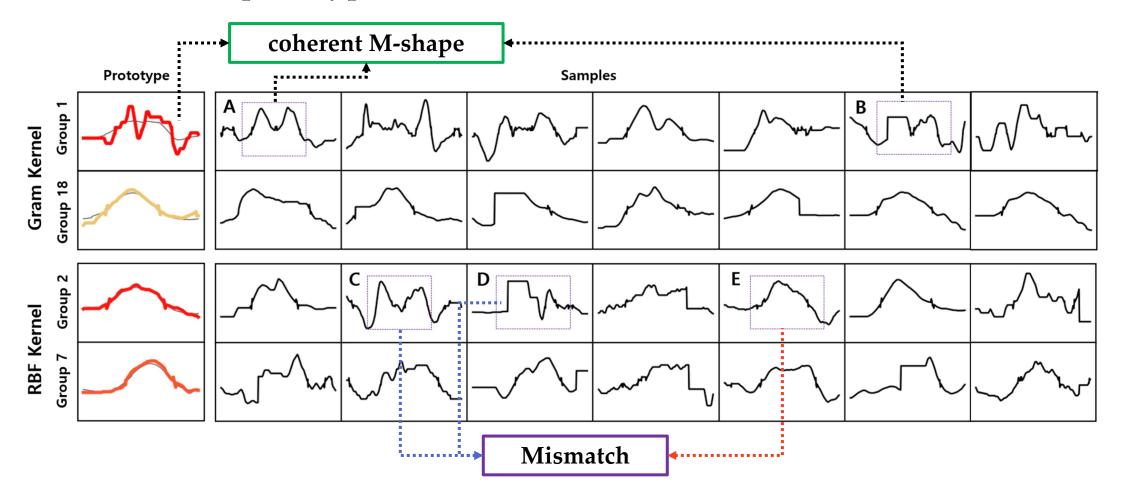
- The **Gram kernel matrix** is useful to capture learned temporal patterns.
- What is a good prototype for temporal data?
 - 1. Each prototype group has a coherent pattern.
 - 2. Prototypes have different shapes from each other.



* Radial basis function (RBF) kernel: $\exp(-2\gamma ||x_i - x_j||_2^2)$ with large γ

Effectiveness of PTAP

• The results of prototype selection with the Gram kernel matrix



Understanding Distributed Representations of Concepts in Deep Neural Networks without Supervision

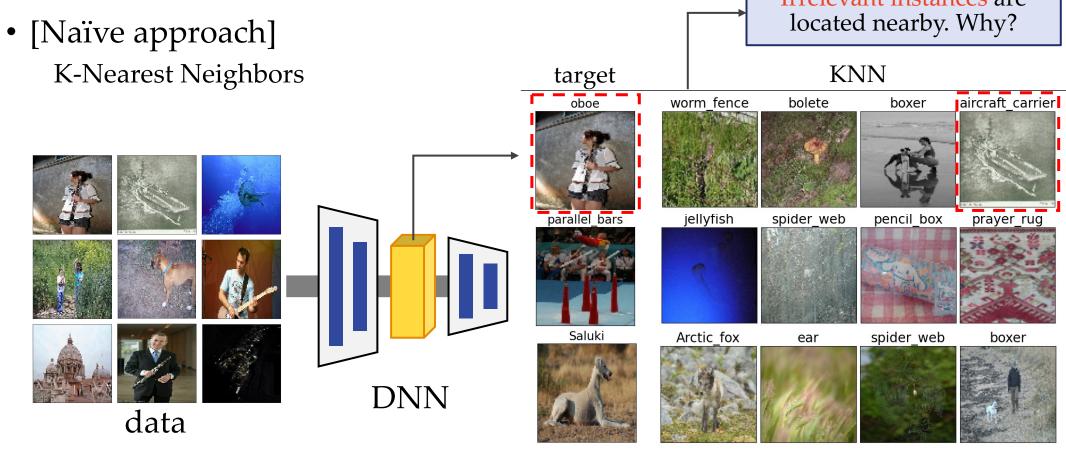
Wonjoon Chang^{*}, Dahee Kwon^{*}, Jaesik Choi

Korea Advanced Institute of Science and Technology (KAIST), South Korea Statistical Artificial Intelligence Lab (SAILab)

* Equal Contribution

Challenges

• How can we reveal implicit representations in the intermediate feature space of DNN? → Group-level interpretation Irrelevant instances are

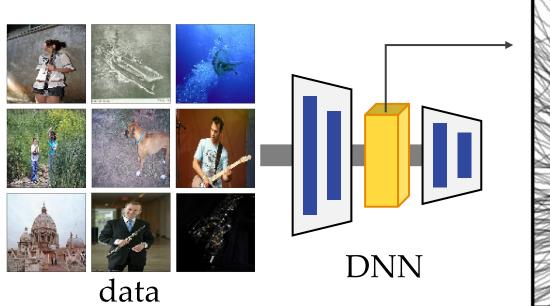


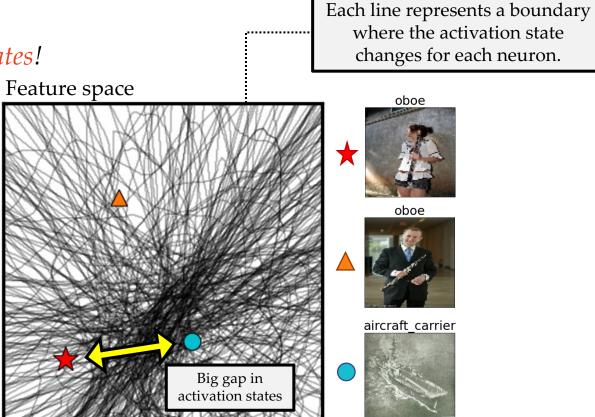
Challenges

• [Challenge – *complex internal space*]

DNN utilizes different information from data according to the local region of the internal space.

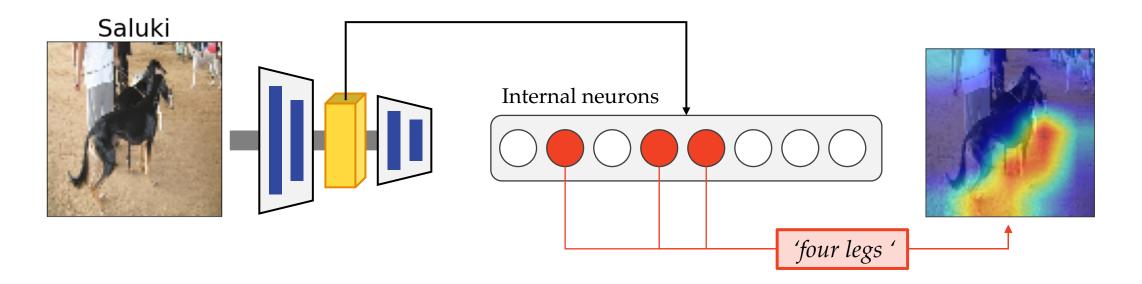
• [Idea] (= Configuration) Evaluate the difference in neuron activation states!





Distributed Representations

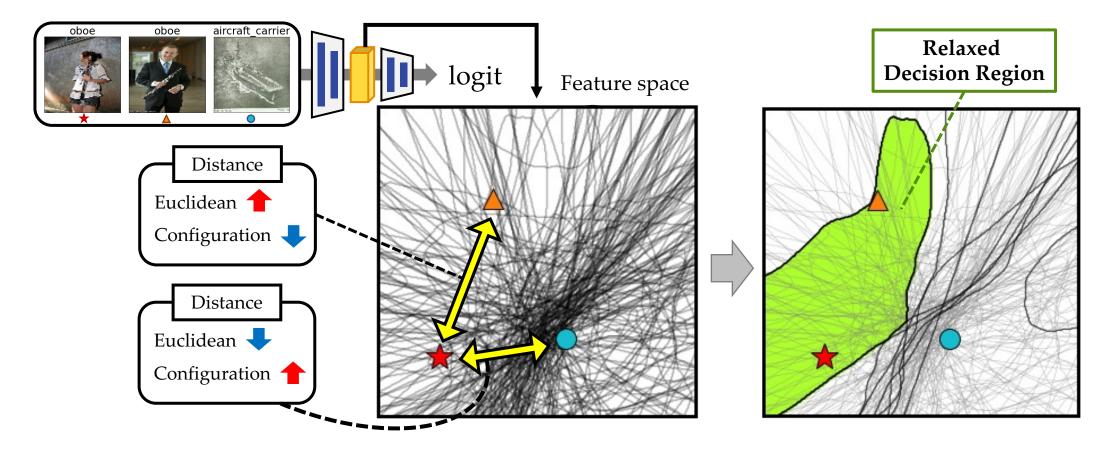
- *Distributed Representations* each concept that the model learned is represented by multiple internal neurons.
- Neuron activation states may be highly related to the concepts in DNNs.



- Learning distributed representations of concepts, 1986
- Net2vec: Quantifying and explaining how concepts are encoded by filters in deep neural networks, 2018

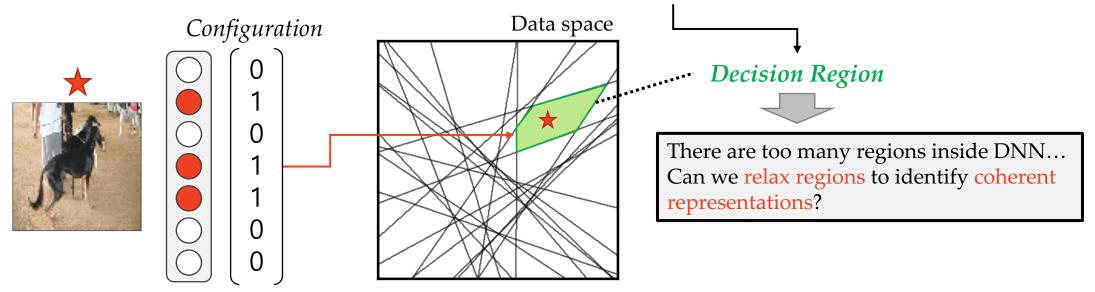
Overview – Relaxed Decision Region

• Find a principal configuration where a target and relevant samples share learned representations by using configuration information.



Configuration

- Why do we focus on neuron activation to capture representations of concepts?
- Configuration
 - a binary vector that represent activation states of neurons
 - Configuration determines the mapping of DNN in the **local region** [3]



- Exact and consistent interpretation for piecewise linear neural networks: A closed form solution, 2018

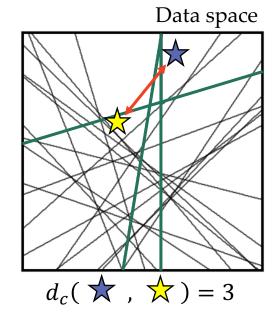
Configuration Distance

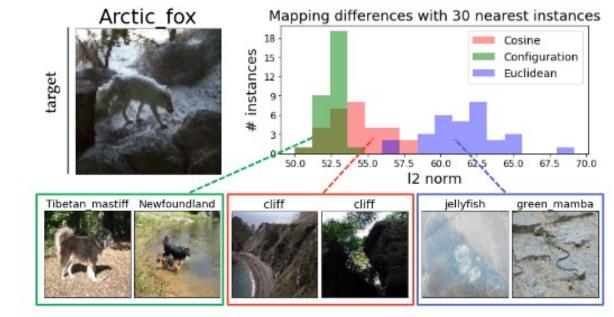
• Definition

Given an instance $x, \tilde{x} \in \mathcal{X}$, the Configuration distance for a set of neurons *N* is defined as follows:

$$d_C(x,\tilde{x}) = d_H(c^N(x), c^N(\tilde{x}))$$

where d_H denotes the Hamming distance.





Algorithm

• Select *t* principal neurons to construct an internal region that exhibits strong coherence with a target instance *x*, while ensuring distinctiveness from irrelevant instances.

$$\min_{\substack{\mathbf{c}_{p} \in \{0,1\}^{t} \\ N^{*} \subset N}} \mathbb{E}_{\mathbf{x}}[d_{H}(\mathbf{c}^{N^{*}}(\mathbf{x}), \mathbf{c}_{p})] - \mathbb{E}_{\mathbf{y}}[d_{H}(\mathbf{c}^{N^{*}}(\mathbf{y}), \mathbf{c}_{p})] \\ \text{s.t.} |N^{*}| = t$$
(5)
Exhibit strong coherence with the positive set, while ensuring distinctiveness from the negative set.

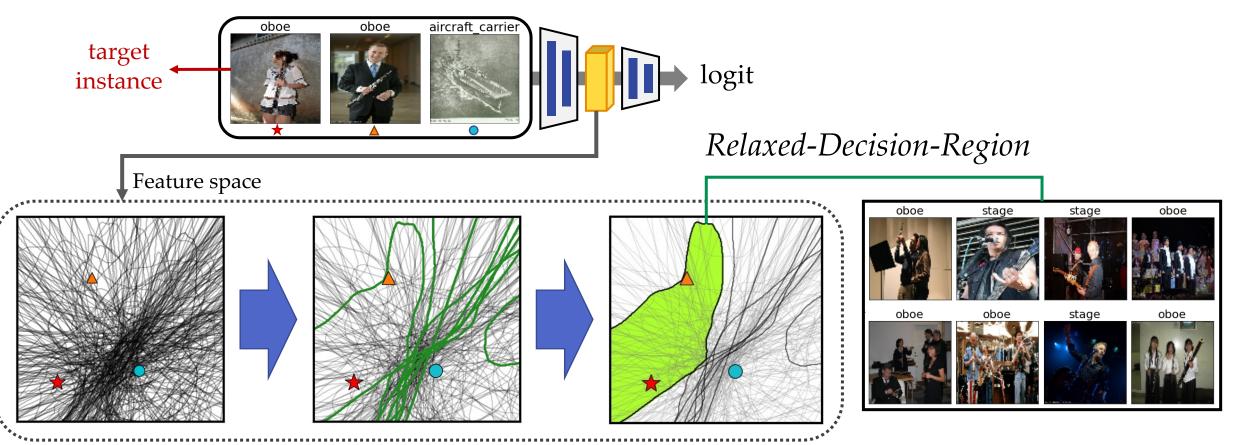
Algorithm

• *positive set S*: automatically collect k-nearest neighbors *based on d_C*

• *negative set S_{neg}*: easily sample from remaining data points

Algorithm

• In greedy method, we sequentially select configuration that minimize Equation (5).

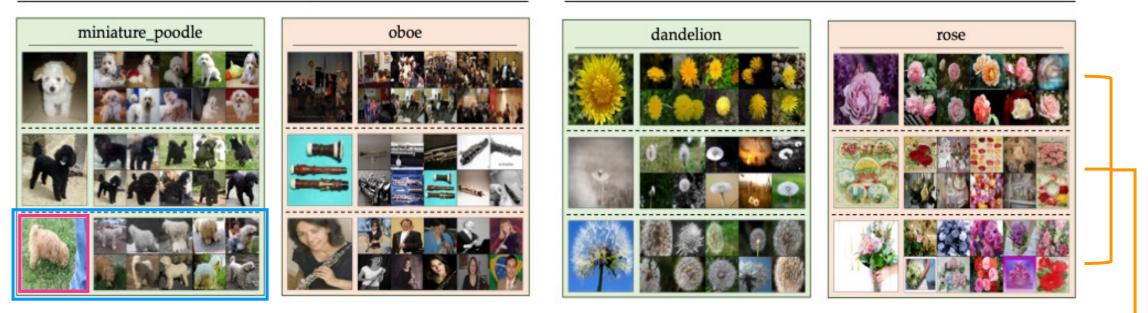


Experiments

• Finding Unlabeled Subclasses

Mini-ImageNet

Flowers



target RDR

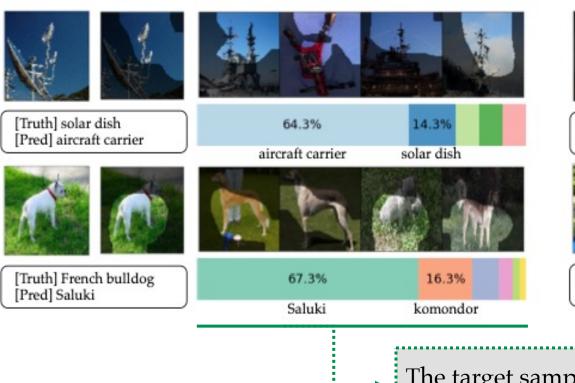
Different RDRs capture different learned concepts

without prior knowledge of sublabel information.

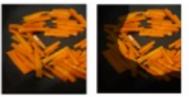
Experiments

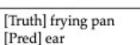
• Reasoning Misclassified Classes

Mini-ImageNet



ImageNet-X





Annotated Failure Type: - Close up of raw fries on the frying pan (larger)

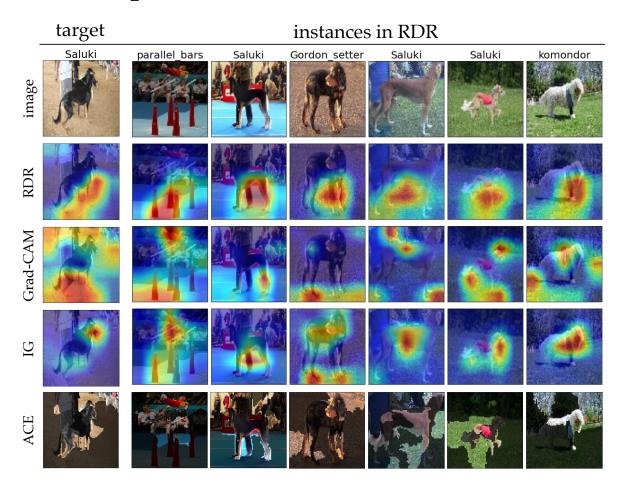
[Truth] reel [Pred] carousel

Annotated Failure Type: - a kid holding the reel (pose)

The target sample has similar properties with Saluki due to its long, thin legs

Experiments

• Comparison with other XAI methods



	Purity			Entropy		
	VGG	RSN	MBN2	VGG	RSN	MBN2
RDR	0.351	0.408	0.346	1.527	1.372	1.531
KNN_C	0.303	0.328	0.329	1.588	1.497	1.498
CAR_C	0.022	0.038	0.036	2.264	2.153	2.527
CAV_C	0.314	0.387	0.323	1.549	1.416	1.575
RI	0.045	0.056	0.056	2.161	1.971	2.369
RDR_{Euc}	0.241	0.252	0.303	1.76	1.779	1.76
KNN_{Euc}	0.183	0.166	0.275	1.835	1.862	1.791
CAR_{Euc}	0.039	0.037	0.037	2.272	2.17	2.476
CAV_{Euc}	0.207	0.240	0.283	1.811	1.787	1.745
RDR_{Cos}	0.309	0.307	0.346	1.613	1.7	1.628
KNN_{Cos}	0.250	0.232	0.283	1.672	1.771	1.635
CAR_{Cos}	0.042	0.027	0.036	2.251	2.14	2.576
CAV_{Cos}	0.261	0.283	0.274	1.596	1.734	1.651

Purity =
$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{1}_{[y_t = \tilde{y}]}$$

Entropy = $\sum_{y: \mathcal{P}_y \neq 0} -\mathcal{P}_y * \log \mathcal{P}_y$
where $\mathcal{P}_y = \frac{1}{T} \sum_{t=1}^{T} \mathbf{1}_{[y_t = y]}$ (empirical distribution).

Conclusion

[Goal]

• Identify **the internal representations that DNN implicitly learned** for DNN interpretability without supervision.

[Prototypes of Temporally Activated Patterns]

• We propose a new framework to interpret decision-making process of a temporal CNN classifier by **finding representative temporal patterns** detected by the networks.

[Relaxed Decision Region]

• Our **Relaxed Decision Region** framework detects a principal configuration where a target and relevant samples share learned representations by using configuration information.

Thank you!

Wonjoon Chang SAILab, KAIST AI one_jj@kaist.ac.kr 2024.03.21

