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The Problem

Supervised learning algorithms are increasingly used in a variety of high-stakes
domains, from credit scoring to medical diagnosis.
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The Problem

However, many such methods are opaque, in that humans cannot understand
the reasoning behind particular predictions.
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The Problem

The last few years have seen an explosion of post-hoc model-agnostic tools for
explainable artificial intelligence (XAI), e.g.

• feature attributions [12, 7, 17]
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The Problem

The last few years have seen an explosion of post-hoc model-agnostic tools for
explainable artificial intelligence (XAI), e.g.

• feature attributions,
• rule lists, and
• counterfactuals [19, 3, 20].
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The Problem

Inconsistency

These tools are mutually inconsistent [8, 11, 2] and often unreliable [14, 5, 15].
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The Problem

Inconsistency

These tools are mutually inconsistent [8, 11, 2] and often unreliable [14, 5, 15].

Lack of theory

Despite the proliferation of XAI methods, a dearth of theory persists.
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The Solution

Necessity and sufficiency are the building blocks of all successful explanations,
and therefore deserve a privileged position in the theory and practice of XAI.
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The Solution

Our contributions:
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A formal framework for XAI that unifies existing approaches.
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Novel definitions of necessity and sufficiency that quantify the explanatory value of
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The Solution

Our contributions:

Unifying Framework

A formal framework for XAI that unifies existing approaches.

Explanatory Measures

Novel definitions of necessity and sufficiency that quantify the explanatory value of
feature subsets.

Method: LENS

An optimal algorithm for computing explanatory factors.
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Logic

Necessity and sufficiency are expressed in logic via material implication.

If x is logically sufficient for y, then LS1(x, y) : x→ y.

If x is logically necessary for y, then LN1(x, y) : x′ → y′.
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Logic

Necessity and sufficiency are expressed in logic via material implication.

If x is logically sufficient for y, then LS1(x, y) : x→ y.

If x is logically necessary for y, then LN1(x, y) : x′ → y′.

By law of contraposition, both formulae can be rewritten:

If x is logically sufficient for y, then LS2(x, y) : y′ → x′.

If x is logically necessary for y, then LN2(x, y) : y → x.
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Probability

Necessity and sufficiency are expressed in probability via conditioning.

The probability that x is sufficient for y is PS(x, y) : P(y | x).

The probability that x is necessary for y is PN(x, y) : P(y′ | x′).
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Probability

Necessity and sufficiency are expressed in probability via conditioning.

The probability that x is sufficient for y is PS(x, y) : P(y | x).

The probability that x is necessary for y is PN(x, y) : P(y′ | x′).

There is no probabilistic law of contraposition!

What about P(x′ | y′) and P(x | y)?
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Causality

Necessity and sufficiency are expressed in causality via counterfactuals [10].

The probability that x is causally sufficient for y is CS(x, y) : P(yx | x′, y′).

The probability that x is causally necessary for y is CN(x, y) : P(y′x′ | x, y).
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Framework

An explanatory basis B = 〈f,P, C,�〉 is a tuple containing:
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Framework

An explanatory basis B = 〈f,P, C,�〉 is a tuple containing:

• Target function f : X 7→ {0, 1}.
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Framework

An explanatory basis B = 〈f,P, C,�〉 is a tuple containing:

• Target function f : X 7→ {0, 1}.
• Distribution P on contexts z ∈ Z = X ×W .
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Framework

An explanatory basis B = 〈f,P, C,�〉 is a tuple containing:

• Target function f : X 7→ {0, 1}.
• Distribution P on contexts z ∈ Z = X ×W .
• Factors C, a finite set in which each c : Z 7→ {0, 1}.
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Framework

An explanatory basis B = 〈f,P, C,�〉 is a tuple containing:

• Target function f : X 7→ {0, 1}.
• Distribution P on contexts z ∈ Z = X ×W .
• Factors C, a finite set in which each c : Z 7→ {0, 1}.
• Partial ordering � encodes preferences over C.
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Explanatory Measures

Probability of Sufficiency

PS(c, y) := P(f(z) = y | c(z) = c)

Probability of Necessity

PN(c, y) := P(c(z) = c | f(z) = y)
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Explanatory Measures

Probability of Sufficiency

PS(c, y) := P(f(z) = y | c(z) = c)

Probability of Necessity

PN(c, y) := P(c(z) = c | f(z) = y)

Claim: The converse formulation (a) is more expressive than the inverse
alternative, and (b) accords better with intuition.
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Explanatory Measures

Confusion matrix of labels (rows) and factors (columns), with accompanying
definitions of the four fundamental explanatory probabilities.

c(z)

f(z) c c′

y q11 q10
y′ q01 q00

PS(c, y) = q11/(q11 + q01)

PN(c, y) = q11/(q11 + q10)

PS(c′, y′) = q00/(q10 + q00)

PN(c′, y′) = q00/(q01 + q00)
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Explanatory Measures

Confusion matrix of labels (rows) and factors (columns), with accompanying
definitions of the four fundamental explanatory probabilities.

c(z)

f(z) c c′

y q11 q10
y′ q01 q00

PS(c, y) = q11/(q11 + q01)

PN(c, y) = q11/(q11 + q10)

PS(c′, y′) = q00/(q10 + q00)

PN(c′, y′) = q00/(q01 + q00)

These are akin to common measures used to evaluate machine learning
classifiers: precision, recall, negative predictive value, specificity.
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Explanatory Measures

Confusion matrix of labels (rows) and factors (columns), with accompanying
definitions of the four fundamental explanatory probabilities.

c(z)

f(z) c c′

y q11 q10
y′ q01 q00

PS(c, y) = q11/(q11 + q01)

PN(c, y) = q11/(q11 + q10)

PS(c′, y′) = q00/(q10 + q00)

PN(c′, y′) = q00/(q01 + q00)

These are akin to common measures used to evaluate machine learning
classifiers: precision, recall, negative predictive value, specificity.

Note that PN(c, y) = PS(c′, y′)↔ q11 = q00.
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Explanatory Measures

Example contingency table of loan application outcome by education level.

BA No BA Total
Approved 5 10 15
Denied 45 40 85
Total 50 50 100

To what extent is college education necessary for loan approval?
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Explanatory Measures

Example contingency table of loan application outcome by education level.

BA No BA Total
Approved 5 10 15
Denied 45 40 85
Total 50 50 100

To what extent is college education necessary for loan approval?

If we take necessity to be the converse of sufficiency, we have:

P(BA | Approved) = 5/(5+ 10) = 1/3.

© David S. Watson, Limor Gultchin, Ankur Taly, Luciano Floridi 30
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BA No BA Total
Approved 5 10 15
Denied 45 40 85
Total 50 50 100

To what extent is college education necessary for loan approval?

If we take necessity to be the converse of sufficiency, we have:

P(BA | Approved) = 5/(5+ 10) = 1/3.
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Explanatory Measures

Example contingency table of loan application outcome by education level.

BA No BA Total
Approved 5 10 15
Denied 45 40 85
Total 50 50 100

To what extent is college education necessary for loan approval?

If we take necessity to be the converse of sufficiency, we have:

P(BA | Approved) = 5/(5+ 10) = 1/3.

If we take necessity to be the inverse of sufficiency, we have:

P(Denied | No BA) = 40/(40+ 10) = 4/5.

Lacking a BA may be sufficient for loan denial, but having a BA is not necessary
for loan approval!
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Unification

© David S. Watson, Limor Gultchin, Ankur Taly, Luciano Floridi 33



Unification

Feature attributions

Shapley values are a popular feature attribution method [7, 17, 1].

f(x) =
d∑

j=0

φv(j, x)
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Unification

Feature attributions

Shapley values are a popular feature attribution method [7, 17, 1].

f(x) =
d∑

j=0

φv(j, x)

They are defined with respect to a characteristic function.

v(S, x) = E
[
f(x) | XS = xS

]
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Unification

Feature attributions

Shapley values are a popular feature attribution method [7, 17, 1].

f(x) =
d∑

j=0

φv(j, x)

They are defined with respect to a characteristic function.

v(S, x) = E
[
f(x) | XS = xS

]
Each φv(j, x) represents a weighted average of j’s marginal contribution to subsets that
exclude it.

φv(j, x) =
∑

S⊆[d]\{j}

|S|! (d− |S| − 1)!
d!

[
v(S ∪ {j}, x)− v(S, x)

]
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Unification

Feature attributions

Shapley values are a popular feature attribution method [7, 17, 1].

f(x) =
d∑

j=0

φv(j, x)

They are defined with respect to a characteristic function.

v(S, x) = E
[
f(x) | XS = xS

]
Each φv(j, x) represents a weighted average of j’s marginal contribution to subsets that
exclude it.

φv(j, x) =
∑

S⊆[d]\{j}

|S|! (d− |S| − 1)!
d!

[
v(S ∪ {j}, x)− v(S, x)

]
Proposition 1. Let cS(x) = c iff x ∼ δ(xS) p(xS | xS). Then v(S, x) = PS(cS, y).
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Unification

Rule lists

Anchors [13] learn a set of Boolean conditions A such that A(x) = 1 and

prec(A) := PD(xi|A)
(f(x) = f(xi)) ≥ τ.

For fixed τ , the goal is to maximize coverage: E[A(xi) = 1], i.e. the proportion of datapoints
to which the anchor applies.
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Unification

Rule lists

Anchors [13] learn a set of Boolean conditions A such that A(x) = 1 and

prec(A) := PD(xi|A)
(f(x) = f(xi)) ≥ τ.

For fixed τ , the goal is to maximize coverage: E[A(xi) = 1], i.e. the proportion of datapoints
to which the anchor applies.

Proposition 2. Let cA(z) = c iff A(x) = 1. Then prec(A) = PS(cA, y).
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Unification

Counterfactuals

The counterfactual recourse objective [4] is simply to find the highest ranked factor in the
partial ordering that exceeds a sufficiency threshold.

x∗ = argmin
xi∈CF(x)

cost(x, xi).
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Unification

Counterfactuals

The counterfactual recourse objective [4] is simply to find the highest ranked factor in the
partial ordering that exceeds a sufficiency threshold.

x∗ = argmin
xi∈CF(x)

cost(x, xi).

Proposition 3. Let cost be a function representing�, and let c be some factor spanning
reference values. Then the counterfactual recourse objective is:

c∗ = argmin
c∈C

cost(c) s.t. PS(c, y′) ≥ τ.
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Unification

Probabilities of Causation

Pearl [18, 10] defines probabilities of causation over counterfactual domains to quantify
the extent to which an effect is sensitive to its cause—turning on in its presence and off in
its absence.
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Unification

Probabilities of Causation

Pearl [18, 10] defines probabilities of causation over counterfactual domains to quantify
the extent to which an effect is sensitive to its cause—turning on in its presence and off in
its absence.

Proposition 4. Let X, Y ∈ {0, 1}2. We have two counterfactual distributions:
I := P(yx | x′, y′) andR := P(y′x′ | x, y) and a uniform mixture over the two,
P(y) = 0.5I + 0.5R. Let auxiliary variable W tag each sample with a label indicating
whether it comes from the input or reference distribution. Define c(z) = w. Then we have
CS(x, y) = PS(c, y) and CN(x, y) = PS(c′, y′).
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LENS

Local Explanations via Necessity and Sufficiency (LENS) computes minimally
sufficient factors with respect to a given basis B and threshold τ .
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LENS

Local Explanations via Necessity and Sufficiency (LENS) computes minimally
sufficient factors with respect to a given basis B and threshold τ .

Theorem 1

With oracle estimates PS(c, y) for all c ∈ C, LENS is sound and complete. That is, for any C
returned by LENS and all c ∈ C, c is τ -minimal iff c ∈ C.
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LENS

Local Explanations via Necessity and Sufficiency (LENS) computes minimally
sufficient factors with respect to a given basis B and threshold τ .

Theorem 1

With oracle estimates PS(c, y) for all c ∈ C, LENS is sound and complete. That is, for any C
returned by LENS and all c ∈ C, c is τ -minimal iff c ∈ C.

Theorem 2

With sample estimates P̂S(c, y) for all c ∈ C, LENS is uniformly most powerful. That is,
LENS identifies the most τ -minimal factors of any method with fixed type I error α.
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Experiments

LENS provides more informative explanations than SHAP [7] for any fixed degree
of sparsity.
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Experiments

Anchors [13] satisfy a PAC bound, which means some explanations may be less
than τ -sufficient. Factors output by LENS, however, are guaranteed to meet the
τ -minimality criterion.
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Experiments

LENS produces lower-cost counterfactuals than DiCE [9] on average.
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Conclusion

Theoretical contribution

Our formal framework clarifies the relationship between various XAI methods, as well as
their connections to fundamental quantities from logic, probability, and causality.
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Algorithmic contribution

LENS is an optimal procedure for computing minimally sufficient factors.
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Conclusion

Theoretical contribution

Our formal framework clarifies the relationship between various XAI methods, as well as
their connections to fundamental quantities from logic, probability, and causality.

Algorithmic contribution

LENS is an optimal procedure for computing minimally sufficient factors.

Limitations

LENS prioritizes completeness over efficiency. Future work will explore more scalable
approximations, as well as model-specific variants.
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Thanks!

Comments? Questions? Get in touch!

david.watson@kcl.ac.uk

https://dswatson.github.io
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