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P(Heart attack) = 0.8
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P(Heart attack) = 0.8

Global feature importance Local explanation summary
LDL +2.78 - -
BMI
glucose

Avg h active / week

mean(|SHAP value|) SHAP value (impact on model output)
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SHAP: Lundberg et al., Neurlps 2017
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Motivation

1. Feature-based explanations are often difficult to interpret.
Especially
- if many features

- if semantics / connection to higher level concepts is not obvious

Important when human - Al collaboration is time-sensitive!
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Motivation

1. Feature-based explanations are often difficult to interpret.

Use human understandable concepts instead.
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Motivation

For example, concept bottleneck models (CBM)*

@ Smoking
. Drinking

—_— _ — 5 Heart
@ Exercise attack?
@ \eignt
‘ Cholesterol

* Koh et al., ICML 2020
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Motivation
P(Heart attack) = 0.8 High likelihood
. Smoking
Drinking ®
‘ Exercise ‘
@ Weight ®
Cholesterol Low likelihood
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1. Feature-based explanations are often difficult to interpret.
2. CBMs are self-explainable, but trade-off between the main
task and the explanation task.
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Motivation

Feature-based explanations are often difficult to interpret.
CBMs are self-explainable, but trade-off between the main

task and the explanation task.
No rigorous counterfactual reasoning possible.

(“What if | would stop smoking?”)
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Motivation

1. Feature-based explanations are often difficult to interpret.

2. CBMs are self-explainable, but trade-off between the main

task and the explanation task.
3. No rigorous counterfactual reasoning possible.

-> Use post hoc explanations
-> Incorporate causal principles

feedzal


https://feedzai.com/

feedzal

Motivation

Causal diagrams

- Causal relations are represented in a DAG.
- Nodes represent (endogenous) variables.
- Directed edges represent causal relationships.
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Motivation

Structural Causal models (SCMs)

- Exogenous variables: effects from outside the model
- Endogenous variables: determined within the model
- Structural equations: express the relationship between the variables mathematically.

X':= Ny =aX + N,
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Motivation

: If two random variables are statistically dependent, then there
exists a variable causally influencing both.

Elements of Causal Inference; Peters, Janzing, Scholkopf; 2017
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Motivation

Ideally, explanations are in the form of an SCM connecting concepts,

Smoking Drinking Exercise High
Likelihood

Q :I
O

Positive

Cholesterol O
Cardiac O I

Arrest Low

Likelihood ~ Negative
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Methods

Goals:

1. Post hoc
2. Causal
3. Concept-based

21
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Methods

1. Post hoc: train surrogate model

DiConStruct

Fidelity

Black-box Model

22


https://feedzai.com/

feedzal

Methods

2. Causal: SCM inductive bias

DiConStruct

Exogenous
Model Distillation SCM

Black-box Model Fidelity
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3. Concept-based

s | Causal
| Graph

DiConStruct

Exogenous Concept
Model Distillation SCM Concept
Attributions

Black-box Model Fidelity
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Methods

Batch Norm (opt) w
Independence Independence
Dims ) Loss

Discriminator

c Concept Loss

Black-box
Classifier
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Methods

ndependence Independence
Discriminator Loss

I
q(u)

€ —( Concept Loss

: Distillation
Black-box Loss

Classifier

e Concepts and DAG are known a priori.
e We assume:

o Exogenous independence

o Concept completeness

26


https://feedzai.com/

feedzal

Methods

Discriminator

I Per I Independence Independence
- ; Loss

€ —( Concept Loss

e e : Distillation
Black-box Loss
Classifier Y

e Exogenous model (outputs exogenous variables for each concept [@2).

o L common neural network layer blocks
o N concept-specific neural network layer blocks.
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Batch Norm (opt.)

|_ - ndependence Independence
Linear Layer : s H = ) | Discriminator Loss
(

[_Concept Loss ]

: Distillation
Black-box Loss

Classifier

Cr, = U(bk + O’il(uk) + Z ™Mk

JEPA,,

. learnable biases, global weights, local weight functions, respectively.
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Explainer

Batch Norm (opt.)

Linear Layer

Black-box
Classifier

e Objectives:

Exogenous independence loss, concept loss and distillation loss, respectively.

discriminates between the joint distribution of exogenous variables and the
product of marginals obtained by randomly shuffling the exogenous variables.
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Methods

Black-box
Classifier

e Concept attributions:
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Experimental setup

1. Datasets

e CUB-200-2011*: Bird classification (binarized for the purpose of our work)

th 113

Data comes with annotated concepts such as “eye color”, “back color”, etc.

e Merchant fraud detection

Data manually (and partially) annotated by in-house analysts.
Remaining data was pseudo-labeled by training “concept teacher” models.

Concept examples are “high speed ordering”, “suspicious device”, etc.

*Wah et al., 2011

kY
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Experimental setup

2. Evaluation metrics

e Main Task Performance: Given the class imbalance, we chose to use the
metric true positive rate (TPR) evaluated at a fixed false positive rate (FPR),
which we set to be 5%.

e Fidelity: We use the 1 - MAE (mean absolute error).

e Concept Performance: Average accuracy over the K concepts.

KX]
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Experimental setup

3. Baselines

e CBM*: Concept bottleneck model

e Distillation CBM: variation of the above, trained using the same distillation
setup as DiConStruct.

e Various ablation studies on the DiConStruct components.

* Koh et al., ICML 2020

feedzal
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Experimental setup
4. DAGs

We obtain the causal DAG using three causal discovery methods
e PC algorithm (Sprites et al., Causation, prediction, and search, 2000)
e ICA-LiINGAM (Shimizu et al., JMLR,2006)

e NO TEARS (Zheng et al., NeurlPS, 2018)
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Validation

Test

Variant

Task
Perf. (%)

Concept
Perf. (%)

Fidelity (%)

Task
Perf. (%)

Concept
Perf. (%)

Fidelity (%)

—
|
=
D
S
S
q
==
=)
Q

Global

Global w/ Ind.
Local

Local w/ Ind.

77.85

75.58 £ 0.65
75.61 £+ 0.69
75.25 £ 0.76
75.05 £ 1.08

93:52:+0.77
93.16 + 0.75
98.72 £ 0.79
98.78 + 0.86

79.05

75.44 + 0.44
75.43 + 0.65
75.11 £ 0.63
74.89 + 1.19

943 £0.8
93.83 + 0.64
98.79 £ 0.74
98.83 £0.8

Baselines

Joint CBM (A =1)
Distill. Joint CBM (A = 1)
Single task - Task Perf.

Single task - Concept Perf.

Single task - Fidelity

79.25 £ 0.98
77.85
77.85

75.57 £ 0.46
75.48 £+ 0.53

76.11 +£0.21

93.1 4 0.52

96.07 = 0.49

67.33:+:2.13
79.05
79.05

75.76 + 0.55
75.52 4= 0.59

76.07 £ 0.26

93.9 £0.56

96.33 £ 0.26

Merchant Fraud - NN

Global

Global w/ Ind.
Local

Local w/ Ind.

74.67

82.64 £0.14
82.6 £0.11
82.5+0.14
8247 £0.13

97.12:4=10.29
96.96 £ 0.13
99.39 + 0.37
99.34 + 0.41

63.35

82.58 £0.12
82.55 +£0.09
82.45 £0.13
82.42 £ 0.12

96.62 + 0.28
96.45 £ 0.24
99.27 + 0.42
99.23 + 0.49

Baselines

Joint CBM (A =1)
Distill. Joint CBM (A =1)
Single task - Task Perf.

Single task - Concept Perf.

Single task - Fidelity

48.42 + 0.31
74.67
74.67

82.49 £0.14
82.62 £0.13

82.25 +£0.19

96.87 £ 0.18

98.13 £ 0.22

47.47 £ 3.64
63.35
63.35

82.34 £ 0.08
82.57 £0.12

82.25 +0.19

96.19 + 0.29

97.86 + 0.23
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Suspicious Items

O Positive
High

" Suspicious Device |
Likelihood { i

| High speed ordering‘

| Suspicious Items

Good Customer Suspicious O
History K Delivery

Good customer history

2]
2
o
[}
[S]
c
o
O

Suspicious High-Speed Suspicious
Device Ordering Email Low
Likelihood

Suspicious Email

Suspicious Delivery
Negative

0.00 0.02 0.04 0.06 008 0.10 0.12 014 0.16
Concept Attribution
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Conclusions

Key Takeaways:

We propose a novel explainer that is (1) concept-based and causal, (2) a surrogate
model not affecting the predictive performance of the ML model.

Limitations and future work:
e Concept completeness assumption

e Multi-class version
e Learning of the DAG
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