DiConStruct Causal Concept-based Explanations through Black-Box Model Distillation

Ricardo Moreira, Jacopo Bono, Mário Cardoso, Pedro Saleiro, Mário Figueiredo, Pedro Bizarro

XAI Seminar - Imperial College London

20 June 2024

Agenda

Motivation

Methods

Experimental Setup

Results

Conclusions

Motivation

© Feedzai. This presentation is proprietary and confidential

Motivation

Motivation

. . .

© Feedzai. This presentation is proprietary and confidential.

Motivation

P(Heart attack) = 0.8

Motivation

P(Heart attack) = 0.8

SHAP: Lundberg et al., Neurlps 2017

1. Feature-based explanations are often difficult to interpret.

1. Feature-based explanations are often difficult to interpret.

Especially

- if many features
- if semantics / connection to higher level concepts is not obvious

Important when human - AI collaboration is time-sensitive!

1. Feature-based explanations are often difficult to interpret.

Use human understandable concepts instead.

For example, concept bottleneck models (CBM)*

Motivation

P(Heart attack) = 0.8
Smoking
Drinking
Exercise
Weight
Cholesterol

- 1. Feature-based explanations are often difficult to interpret.
- 2. CBMs are self-explainable, but **trade-off** between the main task and the explanation task.

- 1. Feature-based explanations are often difficult to interpret.
- 2. CBMs are self-explainable, but **trade-off** between the main task and the explanation task.
- 3. No rigorous counterfactual reasoning possible.

("What if I would stop smoking?")

- 1. Feature-based explanations are often difficult to interpret.
- 2. CBMs are self-explainable, but **trade-off** between the main task and the explanation task.
- 3. No rigorous counterfactual reasoning possible.
- -> Use **post hoc** explanations
- -> Incorporate causal principles

Causal diagrams

- Causal relations are represented in a **DAG**.
- Nodes represent (endogenous) variables.
- Directed edges represent causal relationships.

Structural Causal models (SCMs)

- **Exogenous** variables: effects from **outside** the model
- Endogenous variables: determined within the model
- **Structural equations**: express the relationship between the variables mathematically.

Common Cause Principle: If two random variables are statistically dependent, then there exists a variable causally influencing both.

Elements of Causal Inference; Peters, Janzing, Schölkopf; 2017

Ideally, explanations are in the form of an SCM connecting concepts,

Methods

© Feedzai. This presentation is proprietary and confidential

Methods

Goals:

- 1. Post hoc
- 2. Causal
- 3. Concept-based

Methods

1. Post hoc: train surrogate model

Methods

2. Causal: SCM inductive bias

Methods

3. Concept-based

- Concepts and DAG are known a priori.
- We assume:
 - Exogenous independence
 - Concept completeness

- **Exogenous model** (outputs exogenous variables u_k for each concept C_k).
 - L common neural network layer blocks
 - N concept-specific neural network layer blocks.

Methods

Exogenous independence loss, concept loss and distillation loss, respectively.

 f_I discriminates between the joint distribution of exogenous variables and the product of marginals obtained by randomly shuffling the exogenous variables.

Methods

• Concept attributions:

$$CA^{(i)}(C_k) = \sum_{a \in \{0,1\}} |\mathbb{P}_{do(C_k:=a)}(Y_B^{(i)} = 1) - \mathbb{P}(Y_B^{(i)} = 1)|$$

Experimental Setup

Experimental setup

1. Datasets

• **CUB-200-2011***: Bird classification (binarized for the purpose of our work)

Data comes with annotated concepts such as "eye color", "back color", etc.

• Merchant fraud detection

Data manually (and partially) annotated by in-house analysts. Remaining data was pseudo-labeled by training "concept teacher" models.

Concept examples are "high speed ordering", "suspicious device", etc.

*Wah et al., 2011

Experimental setup

2. Evaluation metrics

- **Main Task Performance**: Given the class imbalance, we chose to use the metric true positive rate (TPR) evaluated at a fixed false positive rate (FPR), which we set to be 5%.
- Fidelity: We use the 1 MAE (mean absolute error).
- **Concept Performance**: Average accuracy over the K concepts.

Experimental setup

3. Baselines

- **CBM*:** Concept bottleneck model
- **Distillation CBM**: variation of the above, trained using the same distillation setup as DiConStruct.
- Various ablation studies on the DiConStruct components.

Experimental setup

4. DAGs

We obtain the causal DAG using three causal discovery methods

- **PC algorithm** (Sprites et al., Causation, prediction, and search, 2000)
- ICA-LINGAM (Shimizu et al., JMLR,2006)
- **NO TEARS** (Zheng et al., NeurIPS, 2018)

Results

© Feedzai. This presentation is proprietary and confidential.

Results

			Validation			Test		
	Model	Variant	Task Perf. (%)	Concept Perf. (%)	Fidelity (%)	Task Perf. (%)	Concept Perf. (%)	Fidelity (%)
CUB-200-2011	Ours	Global	77.85	75.58 ± 0.65	93.52 ± 0.77	79.05	75.44 ± 0.44	94.3 ± 0.8
		Global w/ Ind.		75.61 ± 0.69	93.16 ± 0.75		75.43 ± 0.65	93.83 ± 0.64
		Local		75.25 ± 0.76	98.72 ± 0.79		75.11 ± 0.63	98.79 ± 0.74
		Local w/ Ind.		75.05 ± 1.08	98.78 ± 0.86		74.89 ± 1.19	98.83 ± 0.8
	Baselines	Joint CBM ($\lambda = 1$)	79.25 ± 0.98	75.57 ± 0.46	-	67.33 ± 2.13	75.76 ± 0.55	-
		Distill. Joint CBM ($\lambda = 1$)	77.85	75.48 ± 0.53	93.1 ± 0.52	79.05	75.52 ± 0.59	93.9 ± 0.56
		Single task - Task Perf.	77.85	-	-	79.05	-	-
		Single task - Concept Perf.	-	76.11 ± 0.21	-	-	76.07 ± 0.26	-
		Single task - Fidelity	-	-	96.07 ± 0.49	-	-	96.33 ± 0.26
Merchant Fraud - NN	Ours	Global	74.67	82.64 ± 0.14	97.12 ± 0.29	63.35	82.58 ± 0.12	96.62 ± 0.28
		Global w/ Ind.		82.6 ± 0.11	96.96 ± 0.13		82.55 ± 0.09	96.45 ± 0.24
		Local		82.5 ± 0.14	99.39 ± 0.37		82.45 ± 0.13	99.27 ± 0.42
		Local w/ Ind.		82.47 ± 0.13	99.34 ± 0.41		82.42 ± 0.12	99.23 ± 0.49
	Baselines	Joint CBM ($\lambda = 1$)	48.42 ± 0.31	82.49 ± 0.14	-	47.47 ± 3.64	82.34 ± 0.08	-
		Distill. Joint CBM ($\lambda = 1$)	74.67	82.62 ± 0.13	96.87 ± 0.18	63.35	82.57 ± 0.12	96.19 ± 0.29
		Single task - Task Perf.	74.67	-	-	63.35	-	-
		Single task - Concept Perf.	-	82.25 ± 0.19	-	-	82.25 ± 0.19	-
		Single task - Fidelity	_	_	98.13 ± 0.22	-		97.86 ± 0.23

Results

Conclusions

© Feedzai. This presentation is proprietary and confidential

39

Conclusions

Key Takeaways:

We propose a **novel explainer** that is (1) **concept-based** and **causal**, (2) a **surrogate model** not affecting the predictive performance of the ML model.

Limitations and future work:

- Concept completeness assumption
- Multi-class version
- Learning of the DAG

Thank You

