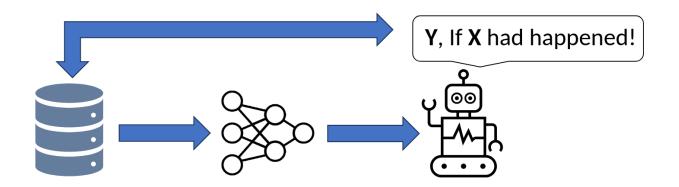
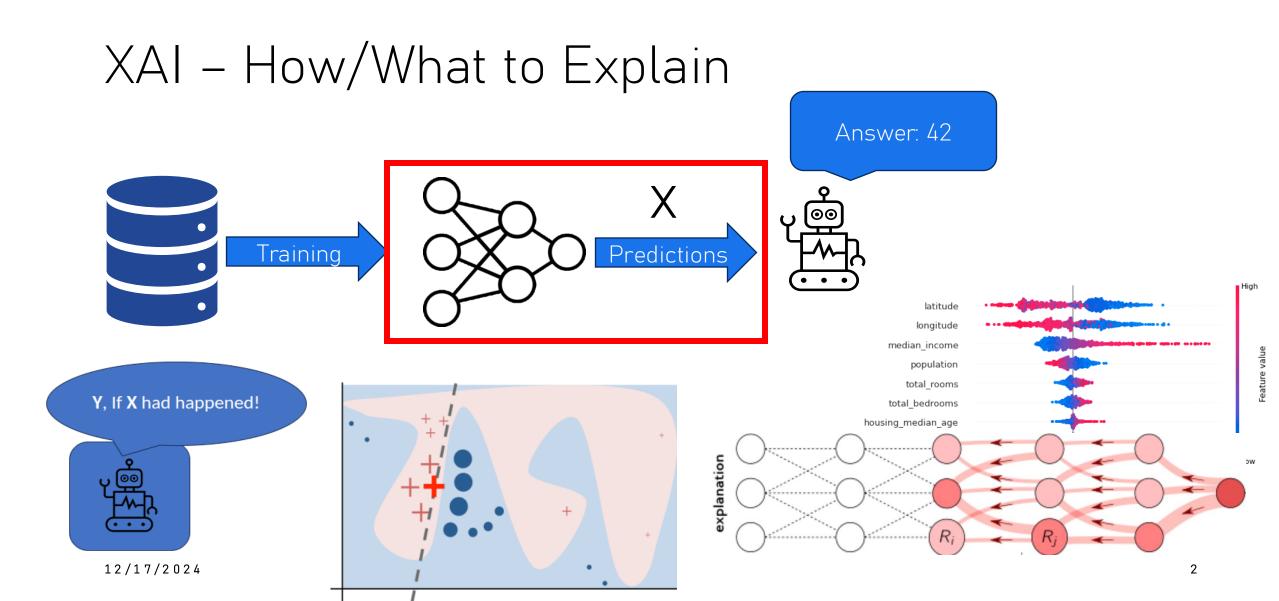
"Who Dunit?" -- Tracing Explanations back to Training Samples



DR. ANDRÉ ARTELT, BIELEFELD UNIVERSITY, GERMANY

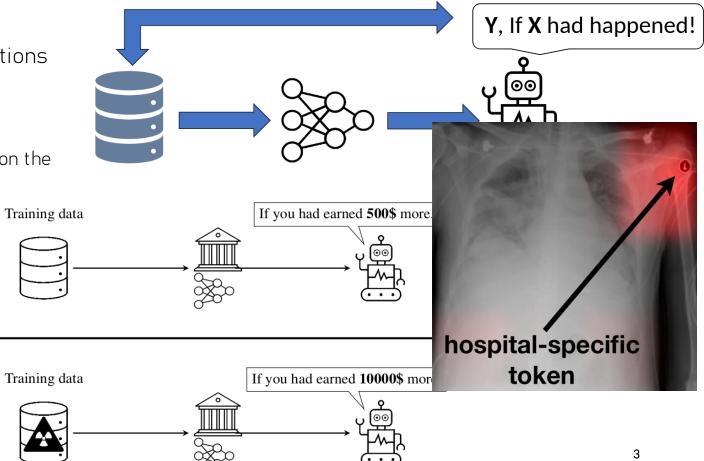
AARTELT@TECHFAK.UNI-BIELEFELD.DE



What Causes an Explanation?

or "How to explain an Explanation"

- Understanding the root cause of an explanations
 => proxy for model behavior
- Tracing it back to the training data!
 => Which training samples have a high influence on the explanation
- Detecting "issues" in training data
 - Poisonings/Attacks [Artelt 2024]
 - Wrong labels
 - Information leaks



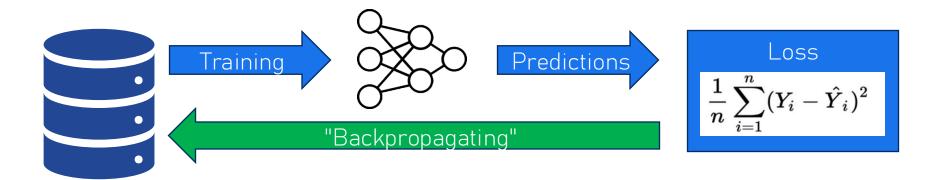
12/17/2024

٠

....

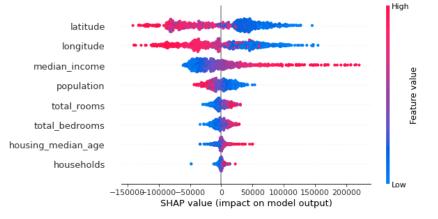
What's already out there?

- Influence of training samples on predictive accuracy or model parameters:
 - o "Old": Influence functions
 - o "New": Data valuation (e.g. [Ghorbani 2019])



Short primer on Data-SHAP [Ghorbani 2019]

- Idea: Apply SHAP to data valuation
- Players = Training samples
- Scoring: Influence (pos. or neg.) on predictive accuracy –– V : $\mathcal{S} \mapsto \mathbb{R}$

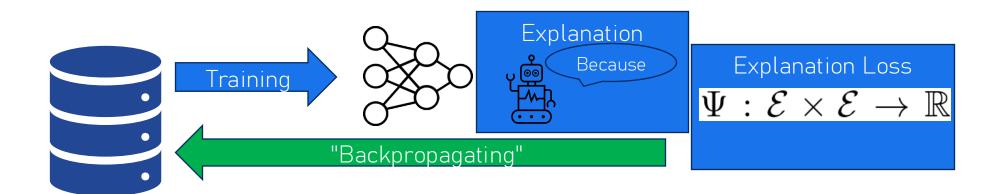


$$\phi_{i} = C \sum_{\mathcal{S} \subseteq \mathcal{D} - \{i\}} \frac{V(\mathcal{S} \cup \{i\}) - V(\mathcal{S})}{\binom{|\mathcal{D}| - 1}{|\mathcal{S}|}}$$

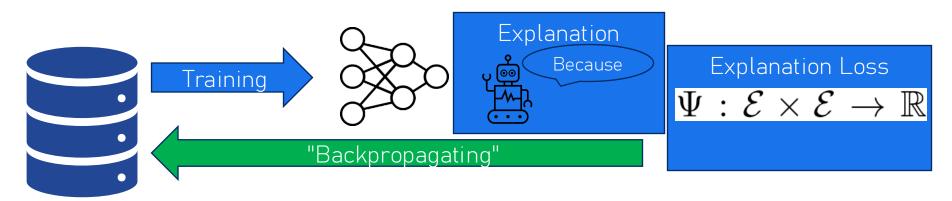
• Monte-Carlo approximation: $\phi_i = \mathbb{E}_{\pi \sim \Pi} [V(\mathcal{S}^i_\pi \cup \{i\}) - V(\mathcal{S}^i_\pi)]$

Extending the Pipeline

• Influence on an explanation instead of predictive loss



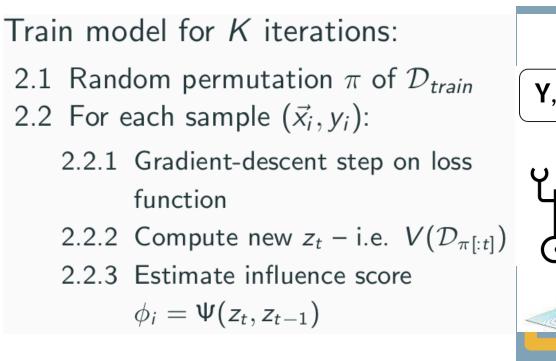
A Data-SHAP based Method

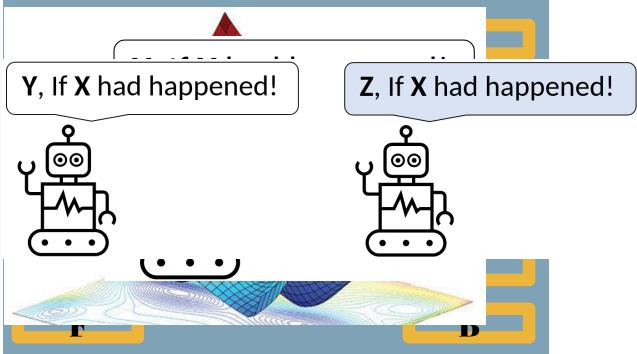


- RQ: Finding training samples that change the explanations significantly: $|\Psi(z_{\mathcal{D}_{train}}, z_{\mathcal{D}_{train} \setminus \mathcal{D}_{infl}})| \gg 0$
- Value function: $V(\mathcal{D} \cup \{i\}) V(\mathcal{D}) := \Psi(z_{\mathcal{D} \cup \{i\}}, z_{\mathcal{D}})$ (e.g. p-norms)
- Apply Monte-Carlo method (similar to Data-SHAP)

Gradient-based Monte Carlo Method

• How to speed things up: Do not train model until convergence!





Case-Studies on Counterfactuals

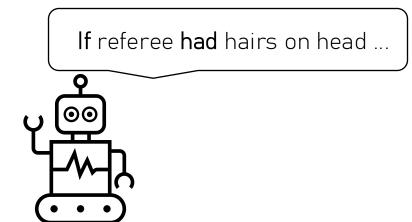
Investigating differences in the cost of recourse

Counterfactual Explanations

A crash course on counterfactual explanations

Counterfactuals: What-If Explanations

- Contrasting explanations
 - $\circ~$ How to change the outcome?
- Intuitive to humans
 - Well-grounded in philisophy, psychology, cognitive science



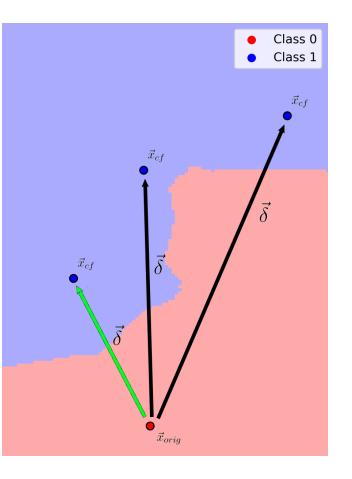
https://youtu.be/eMx-2s7mZ24

Modeling Approaches

• Optimization problem [Wachter 2017]:

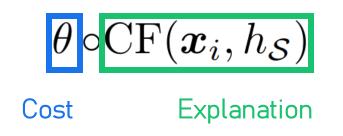
$$\begin{array}{l} \arg\min_{\vec{x_{cf}} \in \mathbb{R}^{d}} \ell(h(\vec{x_{cf}}), y_{cf}) + C \cdot \theta(\vec{x_{cf}}, \vec{x_{orig}}) \\ & & & & \\ \hline \\ Contrastive & Cost/Proximity \\ \end{array}$$

In constraint form:



Cost of Recourse

• Complexity of the explanation:



- How expensive is the recommendation?
 - Number of changes
 - Amount of change
 - 0
- => Domain specific!

Case-Study: Cost of Recourse

• What training samples are responsible for the average cost of recourse?

$$\frac{1}{|\mathcal{D}|} \sum_{\boldsymbol{x}_i \in \mathcal{D}} \theta \circ \mathrm{CF}(\boldsymbol{x}_i, h_{\mathcal{S}})$$

• Approximate the cost of recourse [Sharma 2021]:

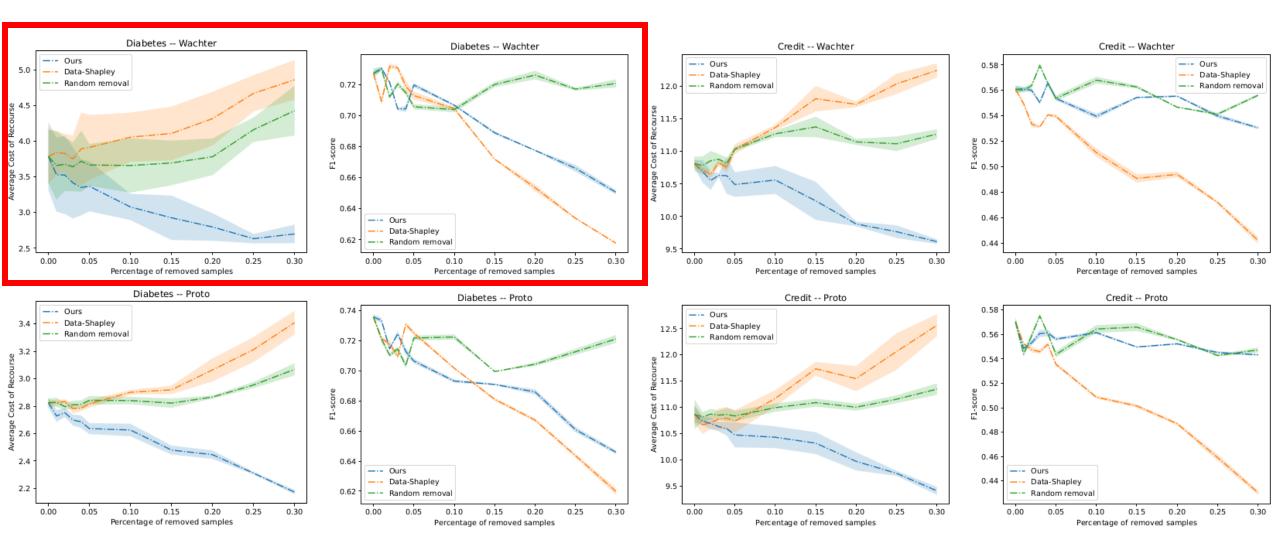
$$\theta \circ \mathrm{CF}(\boldsymbol{x}_i, h_{\mathcal{S}})) \approx |g_0(\boldsymbol{x}_i) - g_1(\boldsymbol{x}_i)|$$

• What happens if we remove those relevant training samples?

Experiments

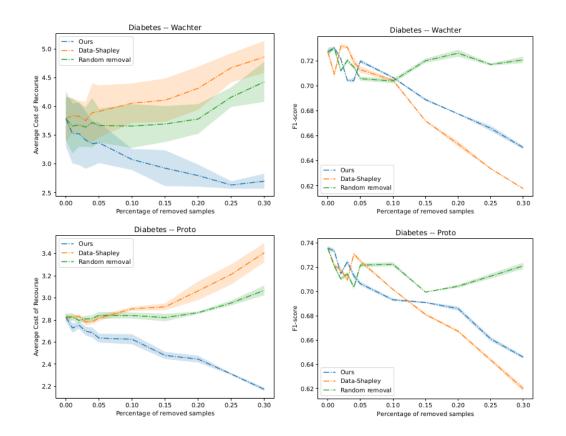
- Classifier:
 - o Neural network
- Data:
 - o Diabetes data set
 - o German Credict Data Set
- Cost of Recourse:
 - o L1 norm

- Counterfactual Explanations:
 - o Wachter et al. [Wachter 2017]
 - o Nearest unlike neighbor
 - Counterfactuals guided by prototypes
 [Looveren 2021]
- o Baselines:
 - o Data-SHAP [Ghorbani 2019]
 - o Random removal



Results

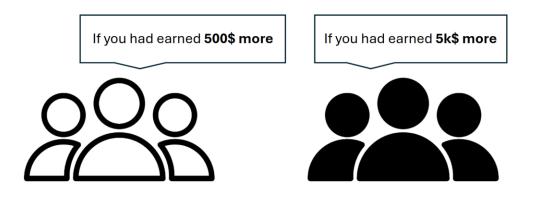
- Average cost of recourse decreases
 o Baselines fail completely!
- Loss on predictive accuracy
 o Not as bad as Data-SHAP!



Case-Study: Unfairness in Cost of Recourse

1

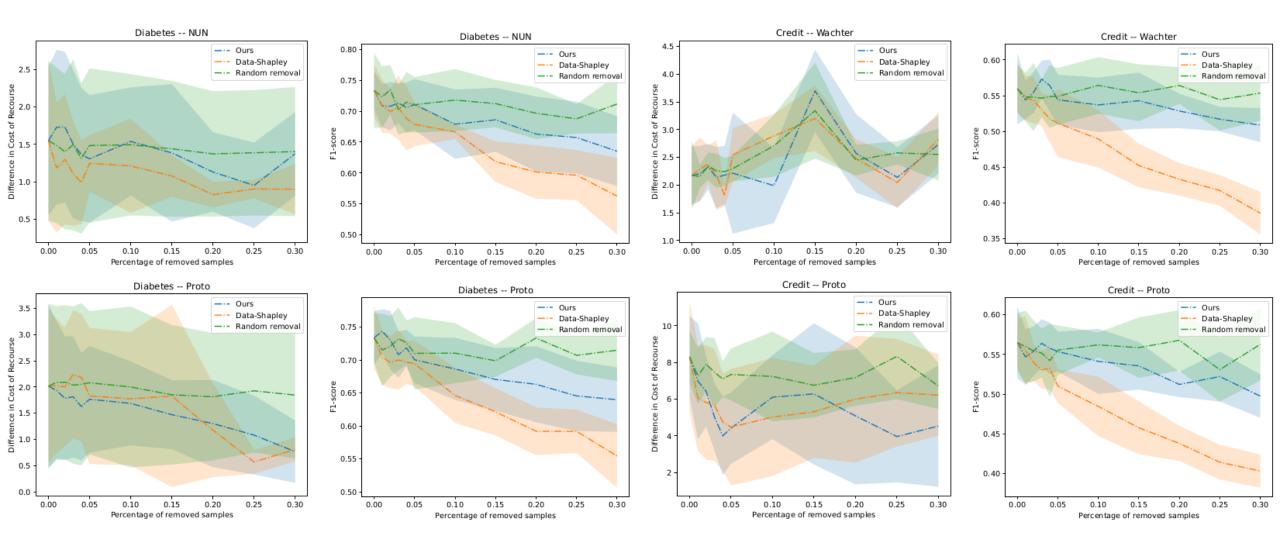
• Differences in the cost of recourse between protected groups



• Identify relevant training samples

$$\max_{\boldsymbol{x}_i \in \mathcal{D}} (\theta \circ \mathrm{CF}(\boldsymbol{x}_i \mid s = 0, h_{\mathcal{S}})) - \max_{\boldsymbol{x}_i \in \mathcal{D}} (\theta \circ \mathrm{CF}(\boldsymbol{x}_i \mid s = 1, h_{\mathcal{S}}))$$

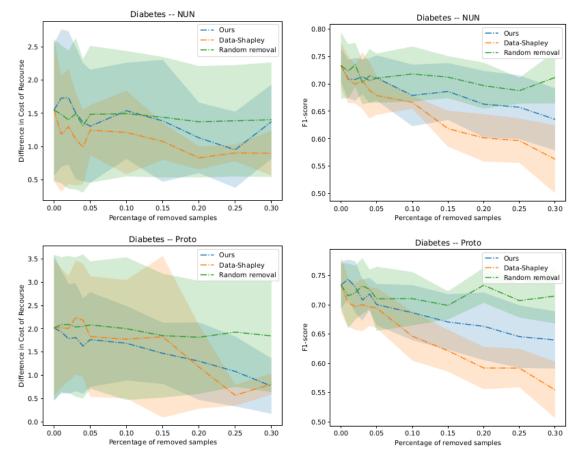
- Again, approximate cost of recourse [Sharma 2021]
- What happens if we remove those relevant training samples?



Results

- High variance group unfairness is very sensitive to train-test splits
- Competitive with Data-SHAP
- Loss in predictive accuracy
 Not as bad as Data-SHAP
- => Data-SHAP and our methods find different samples!

Infl. Accuracy != Infl. on group unfairness



Summary & Conclusion

- Novel problem: Tracing explanations back to training samples
- First algorithm based on Data-SHAP
- Case studies on counterfactuals
- <u>Future work:</u>
 - o Groups of influential samples
 - o Other types of explanations

0 ...

