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XAI – How/What to Explain
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What Causes an Explanation?
or "How to explain an Explanation"

• Understanding the root cause of an explanations

=> proxy for model behavior

• Tracing it back to the training data!

=> Which training samples have a high influence on the 
explanation

• Detecting "issues" in training data

• Poisonings/Attacks [Artelt 2024]

• Wrong labels

• Information leaks

• ….
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What's already out there?

• Influence of training samples on predictive accuracy or model parameters:

o "Old": Influence functions

o "New": Data valuation (e.g. [Ghorbani 2019])
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Short primer on Data-SHAP

• Idea: Apply SHAP to data valuation

• Players = Training samples

• Scoring: Influence (pos. or neg.) on predictive 

accuracy -- 

• Monte-Carlo approximation: 

1 2 / 1 7 / 2 0 2 4
              

5

[Ghorbani 2019]



Extending the Pipeline

• Influence on an explanation instead of predictive loss
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A Data-SHAP based Method

• RQ: Finding training samples that change the explanations significantly:

• Value function:                                                                              (e.g. p-norms)

• Apply Monte-Carlo method (similar to Data-SHAP)
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Gradient-based Monte Carlo Method

• How to speed things up: Do not train model until convergence!
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Case-Studies on Counterfactuals
Investigating differences in the cost of recourse
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Counterfactual Explanations
A crash course on counterfactual explanations
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Counterfactuals: What-If Explanations

• Contrasting explanations

o How to change the outcome?

• Intuitive to humans

o Well-grounded in philisophy, psychology, 

cognitive science
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If referee had hairs on head ...

https://youtu.be/eMx-2s7mZ24

https://youtu.be/eMx-2s7mZ24


Modeling Approaches
• Optimization problem [Wachter 2017]:

In constraint form:

Contrastive Cost/Proximity

Cost/Proximity Contrastive



Cost of Recourse

• Complexity of the explanation: • How expensive is the recommendation?

o Number of changes

o Amount of change

o ….

=> Domain specific!
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Case-Study: Cost of Recourse

• What training samples are responsible for the average cost of recourse?

• Approximate the cost of recourse [Sharma 2021]:

• What happens if we remove those relevant training samples?
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Experiments

• Classifier:

o Neural network

• Data:

o Diabetes data set

o German Credict Data Set

• Cost of Recourse:

o L1 norm

• Counterfactual Explanations:

o Wachter et al. [Wachter 2017]

o Nearest unlike neighbor

o Counterfactuals guided by prototypes 
[Looveren 2021]

o Baselines:

o Data-SHAP [Ghorbani 2019]

o Random removal
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Results

• Average cost of recourse decreases

o Baselines fail completely!

• Loss on predictive accuracy

o Not as bad as Data-SHAP!
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Case-Study: Unfairness in Cost of Recourse

• Differences in the cost of recourse 

between protected groups

• Identify relevant training samples

• Again, approximate cost of recourse [Sharma 

2021]

• What happens if we remove those 

relevant training samples?
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Results

• High variance – group unfairness is 

very sensitive to train-test splits

• Competitive with Data-SHAP

• Loss in predictive accuracy

o Not as bad as Data-SHAP

=> Data-SHAP and our methods find 

different samples!

Infl. Accuracy != Infl. on group unfairness 
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Summary & Conclusion

• Novel problem: Tracing explanations 

back to training samples

• First algorithm based on Data-SHAP

• Case studies on counterfactuals

• Future work:

o Groups of influential samples

o Other types of explanations

o ...
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