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Outline of the talk
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The Shapley values

Cooperative game theory notion: aims to assign fair rewards to
players according to their contribution to the generol result.
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Cooperative game theory notion: aims to assign fair rewards to
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The Shapley values

To do this, we assume knowledge of the “power” of each possible
coalition

i

There are no assumptions on the
behaviour of these coalitions




The Shapley values: definition

We can compute the contribution that a player makes to a given
coalition S as

...where ®(S) (the worth
of coalition S), is the
¢ ( S U a;‘) —_— ¢ ( S) total expected sum of

payoffs the members of
S can obtain by
cooperation




The Shapley values: definition

We can compute the contribution that a player makes to a given
coalition S as

P(SUz) — ¢(5)

Then, we obtain a score by considering all possible coalitions

2uscx Cs(@(SUz) — ¢(5))



The Shapley values in Machine Learning

A Boolean classifier M over X is a function M: ent(X) — {0,1} that maps
every entity over Xto O or 1.

We say that M accepts an entity when M(e)=1, and that it rejects it if
M(e) = 0.



The Shapley values in Machine Learning

A Boolean classifier M over X is a function M: ent(X) — {0,1} that maps
every entity over Xto O or 1.

We say that M accepts an entity when M(e)=1, and that it rejects it if
M(e) = 0.

We can consider

‘the expected value of M
consistent with e on S"

M e (S ) = E[M |C’w(e, S)] [Congx;gg)egftg the event

where cw(e, S) = {e" € ent(X): €'(x) = e(x) for all x € S}



The Shapley values in Machine Learning

Given a binary model M and an entity e, we can think of the process of
predicting its label as a “game” played by the features.

Pre(S) = E|M|cw(e, 5)]

Shap(M,e,z) = » s (¢me(SU{z}) — dr.e(S))
SCX\z
(X i=i

where ¢; 1= X!



The Shapley values in Machine Learning: Example

[ Person description }

e
-\

has_phd=<2 teaching_experience has_grants international

1 1 1 0



The Shapley values in Machine Learning: Example

How important are the features has_phd<2 has_grants 7

1 1



The Shapley values in Machine Learning: Example

How important are the features has_phd<2 has_grants 2

1 1

Consider all completions of this sub-entity, and average the results

has_phd<2 has_grants teaching_experience international
1 1 0 0

has_phd<2 has_grants teaching_experience international
1 1 0 1

has_phd<2 has_grants teaching_experience international
1 1 1 0

has_phd<2 has_grants teaching_experience international
1 1 1 1




The role of the distribution

If o combination of features determines the output completely when
they are both positive, this will force most completions to be positive.

has_phd-<2 has_grants >
1 1




The role of the distribution

We can limit its influence by assigning a lower probability

Pr( & 7 )<<1

which is then used by the expected value

Pue(S) = E|M|cw(e, 5),



How to obtain the distribution in practice

Usually, it is

e Based on prior knowledge
e |Learned from the data

[ N

In both situations there could be errors,
and this could affect the SHAP score,
consequently affecting feature rankings

- /




Our proposal

® We proposed a framework that handles uncertainty over the
feature space distribution

® We propose reasoning problems and study their complexity

® We showcase in a POC how the framework can provide additional
information to the classical proposal



Our assumptions e
x

We consider @ - spam
e Only binary classifiers -

e Only product distributions Q‘
K

NOT SPAM

Ple)= ] ». ] (-0

reX:e(x)=1 reX:e(x)=0




The framework

Consider some uncertainty over the real distribution of each feature,
represented by an uncertainty interval

Pr € [Nm — Ogy Ky "|_0'az]

Such a situation could arise if these values
are estimated from the training data




The framework

The uncertainty intervals induce a hyperrectangle, and the real distribution
lives inside it

A T~ Our approach allows us to
4P | reinterpret and analyze
SHAP as o function defined
on the uncertainty region:

we analyze its behaviour to
gain concrete insights on
the importance of the
features




An example:

Consider the classifier

—_—0 O OlR
(e (W o s |
OO = Ol

Assume a product distribution {p , Py P, over the feature space, e.g..

| Px=1y=0z=1)=p(I-p)p,
and let e be the null entity (first row)



An example:

_-0 O OlR
O = O o
OO = Ol
HHHHg

SHAP(M,e,z) = SHAP,, _ (p,.p,,R,) =1/6p (-4p.p + 3p, +
3p,) -
Y

The SHAP score, parameterized by a product distribution, is a
multilinear polynomial



The framework

Some notions introduced over this region are

e Domination: x dominatesy if x is better ranked than y for all
possible distributions

art

ShapM,e,x (d) 2 ShapM,e,y (d)




The framework

Some notions introduced over this region are

e Domination: x dominatesy if x is better ranked than y for all

possible distributions
provides a safe way to compare
features under uncertainty

Sha'pM,e,x (d) Z ShapM,e,y (d)




The framework

Some notions introduced over this region are

e Domination: x dominatesy if x is better ranked than y for all
possible distributions

e Ambiguity: x is ambiguous if its contribution can be both
positive and negative, depending on the distribution.

art

;SYhCLpM,e,;B (dl) >0 > ShapM,e,w (dz)



The framework

Some notions introduced over this region are

e Domination: x dominatesy if x is better ranked than y for all
possible distributions

e Ambiguity: x is ambiguous if its contribution can be both
positive and negative, depending on the distribution.

simpler test for robustness (vs
computing SHAP intervals)

ShapM,e,;B (dl) >0 > ShapM,e,w (dg)

art




The framework

Some notions introduced over this region are

e Domination: x dominatesy if x is better ranked than y for all
possible distributions

e Ambiguity: x is ambiguous if its contribution can be both
positive and negative, depending on the distribution.

e Irrelevancy: x if irrelevant if its score is 0 for some distribution.



The framework

Some notions introduced over this region are

e Domination: x dominatesy if x is better ranked than y for all
possible distributions

e Ambiguity: x is ambiguous if its contribution can be both
positive and negative, depending on the distribution.

e Irrelevancy: x if irrelevant if its score is 0 for some distribution.

natural adaptation of checking
irrelevancy of a feature to the
uncertainty setting




Theoretical results

For any feature x, its maximum and minimum SHAP score is
attained in one of the vertices of the region
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Theoretical results

For any feature x, its maximum and minimum SHAP score is
attained in one of the vertices of the region

AT~ > Length of the interval

A e Maximum provides information
pLsas»’ 1 about the robustness of
| | ||| 8= SHAP for that feature

T 0.4

> (Changes of sign in SHAP
, . intervals may indicate
/e Minimum negative/positive impact
WV of a feature on the
Y classification

02




Theoretical results

For any feature x, its maximum and minimum SHAP score is
attained in one of the vertices of the region

e~ Maximum

~ 0.6
p.z

r 0.4

r 0.2

2 — Minimum
06
0.5

: 0.4
0.7 0.3 Py

09 0.2

Also: finding the max/min
of a multilinear polynomial
f over the hyperrectangle R
can be done in 2"poly(|f])

U

We obtain an O(2"eval(SHAP))
complexity for computing SHAP
intervals




Theoretical results

To get the SHAP intervals we need to compute SHAP!
Computing SHAP is hard even for Boolean circuits (#P-hard)

. What if we use decomposable & deterministic Boolean
circuits/decision trees?

SHAP can be
evaluated in
polynomial time for

>
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18 18 Problem: Decide if
L the SHAP score of a

feature 2 7




‘heoretical results

Deciding if S/—IAPM’e’X(p) 2 q is NP-complete (even for decision trees)

We prove this via a reduction from Vertex Cover

G=(V,E)
I =x},[0,1]
> ShapM,e,x (dc) = — Z pupv-[uv - Tn,ﬂ
wel

C = {v1,v} -+ d° =(0,0,1,1,...)



‘heoretical results

REGION-IRRELEVANCY: Deciding if there is a p / SHAP,,_ (o) =0

FEATURE-DOMINANCE: Decide for M, e, and two features x,y if
SHAP,,_ (o) 2 SHAP, y(p) for every p

REGION-AMBIGUITY: Decide if there are two values p, o’/
SHAP, . (P) <0 and SHAP,, . (0)>0

are NP-complete (even for decision trees)




Experimental results

We used the California Housing Dataset and computed the SHAP Intervals for different
uncertainty regions, whose size depend on the sample size used to es{imate the
distribution

42 G gt te s o - @ rpopulation ’
™, . [ [minShap, maxShap] }
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Experimental results

SHAP intervals for all features
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Conclusions and future work

e Interpreting SHAP as a function of the distribution is a useful tool: our
proposed problems provides insight on the relative rankings even in the
presence of uncertainty

e The proposed problems are intractable, but “only" NP-complete

e The hypercube is a consequence of choosing uncertainty intervals
— any other distribution could be used (proper modelling of a Gaussian
for each feature)

e Extend the work to non-binary models.

e Consider a different score such as LIME or RESP, and apply a similar
framework to obtain efficient algorithms.



