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The Shapley values

Cooperative Āame theory notion: aims to assiĀn ÿair rewards to 
players accordinĀ to their contribution to the Āeneral result.

“Fairness” is axiomatized 
by simple properties Efficiency, Symmetry, Linearity, and Null player



The Shapley values
To do this, we assume knowledĀe oÿ the “power” oÿ each possible 
coalition

There are no assumptions on the 
behaviour oÿ these coalitions



The Shapley values: definition
We can compute the contribution that a player makes to a Āiven 
coalition S as

…where Φ(S) (the worth 
of coalition S), is the 
total expected sum of 

payoffs the members of 
S can obtain by 

cooperation



The Shapley values: definition
We can compute the contribution that a player makes to a Āiven 
coalition S as

Then, we obtain a score by considerinĀ all possible coalitions



The Shapley values in Machine LearninĀ
A Boolean classifier M over X is a ÿunction M: ent(X) → {0,1} that maps 
every entity over X to 0 or 1. 

We say that M accepts an entity when M(e)=1, and that it rejects it iÿ 
M(e) = 0. 



The Shapley values in Machine LearninĀ
A Boolean classifier M over X is a ÿunction M: ent(X) → {0,1} that maps 
every entity over X to 0 or 1. 

We say that M accepts an entity when M(e)=1, and that it rejects it iÿ 
M(e) = 0. 

We can consider 

where cw(e, S) := {e′ ∈ ent(X) : e′(x) = e(x) ÿor all x ∈ S} 

“the expected value oÿ M 
conditioned to the event 

cw(e,S) oÿ entities 
consistent with e on S” 



The Shapley values in Machine LearninĀ
Given a binary model M and an entity e, we can think oÿ the process oÿ 
predictinĀ its label as a “Āame” played by the ÿeatures.

where



The Shapley values in Machine LearninĀ: Example

Person description Good hire / Bad hire

has_phd<2 teaching_experience has_grants international …

1 1 1 0 …
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The Shapley values in Machine LearninĀ: Example
has_phd<2 has_grants

1 1

How important are the ÿeatures                                                          ?

Consider all completions oÿ this sub-entity, and averaĀe the results

has_phd<2 has_grants teaching_experience international …

1 1 1 1 …

has_phd<2 has_grants teaching_experience international …

1 1 1 0 …

has_phd<2 has_grants teaching_experience international …

1 1 0 1 …

has_phd<2 has_grants teaching_experience international …

1 1 0 0 …



The role oÿ the distribution
Iÿ a combination oÿ ÿeatures determines the output completely when 
they are both positive, this will ÿorce most completions to be positive.

has_phd<2 has_grants

1 1



The role oÿ the distribution
We can limit its influence by assiĀninĀ a lower probability

which is then used by the expected value

has_phd<2 has_grants

1 1



How to obtain the distribution in practice
Usually, it is

● Based on prior knowledĀe
● Learned ÿrom the data

In both situations there could be errors, 
and this could affect the SHAP score, 

consequently affectinĀ ÿeature rankinĀs



Our proposal

● We proposed a ÿramework that handles uncertainty over the 
ÿeature space distribution

● We propose reasoninĀ problems and study their complexity
● We showcase in a POC how the ÿramework can provide additional 

inÿormation to the classical proposal



Our assumptions
We consider

● Only binary classifiers
● Only product distributions



The ÿramework
Consider some uncertainty over the real distribution oÿ each ÿeature, 
represented by an uncertainty interval

Such a situation could arise iÿ these values 
are estimated ÿrom the traininĀ data



The framework

The uncertainty intervals induce a hyperrectangle, and the real distribution 
lives inside it

Our approach allows us to 
reinterpret and analyze 
SHAP as a ÿunction defined 
on the uncertainty reĀion: 
we analyze its behaviour to 
Āain concrete insiĀhts on 
the importance oÿ the 
ÿeatures



An example:
Consider the classifier 

Assume a product distribution ⟨px, py, pz⟩ over the ÿeature space, e.Ā.: 
P(x = 1,y = 0,z = 1) = px(1−py)pz

and let e be the null entity (first row)



An example:

SHAP(M,e,z) = SHAPM,e,z(px,py,pz) = 1/6pz(−4pxpy + 3px + 
3py)

The SHAP score, parameterized by a product distribution, is a 
multilinear polynomial
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Some notions introduced over this reĀion are

● Domination: x dominates y iÿ x is better ranked than y ÿor all 
possible distributions
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provides a saÿe way to compare 
ÿeatures under uncertainty
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computinĀ SHAP intervals)
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The framework

Some notions introduced over this reĀion are

● Domination: x dominates y iÿ x is better ranked than y ÿor all 
possible distributions

● Ambiguity: x is ambiĀuous iÿ its contribution can be both 
positive and neĀative, dependinĀ on the distribution.

● Irrelevancy: x iÿ irrelevant iÿ its score is 0 ÿor some distribution.

natural adaptation oÿ checkinĀ 
irrelevancy oÿ a ÿeature to the 

uncertainty settinĀ



Theoretical results

Maximum

Minimum

For any ÿeature x, its maximum and minimum SHAP score is 
attained in one oÿ the vertices oÿ the reĀion



Theoretical results

Maximum

Minimum

➢ LenĀth oÿ the interval 
provides inÿormation 
about the robustness oÿ 
SHAP ÿor that ÿeature

➢ ChanĀes oÿ siĀn in SHAP 
intervals may indicate 
neĀative/positive impact 
oÿ a ÿeature on the 
classification

For any ÿeature x, its maximum and minimum SHAP score is 
attained in one oÿ the vertices oÿ the reĀion



Theoretical results

Maximum

Minimum

Also: findinĀ the max/min 
oÿ a multilinear polynomial 
ÿ over the hyperrectanĀle R 
can be done in 2npoly(|ÿ|)

For any ÿeature x, its maximum and minimum SHAP score is 
attained in one oÿ the vertices oÿ the reĀion

We obtain an O(2neval(SHAP)) 
complexity ÿor computinĀ SHAP 

intervals



Theoretical results
To Āet the SHAP intervals we need to compute SHAP!

ComputinĀ SHAP is hard even ÿor Boolean circuits (#P-hard)

⤷ What iÿ we use decomposable & deterministic Boolean 
circuits/decision trees? SHAP can be 

evaluated in 
polynomial time ÿor 

these models

Problem: Decide iÿ 
the SHAP score oÿ a 

ÿeature ≥ q?



Theoretical results

We prove this via a reduction ÿrom Vertex Cover

DecidinĀ iÿ SHAPM,e,x(p) ≥ q is NP-complete (even ÿor decision trees)



Theoretical results

REGION-IRRELEVANCY: DecidinĀ iÿ there is a p / SHAPM,e,x(p) =0 

FEATURE-DOMINANCE: Decide ÿor M, e, and two ÿeatures x,y iÿ 
SHAPM,e,x(p) ≥ SHAPM,e,y(p) ÿor every p

REGION-AMBIGUITY: Decide iÿ there are two values p, p’ / 
SHAPM,e,x(p) <0 and SHAPM,e,x(p’)>0

are NP-complete (even ÿor decision trees)



Experimental results
We used the Caliÿornia HousinĀ Dataset and computed the SHAP Intervals ÿor different 
uncertainty reĀions, whose size depend on the sample size used to estimate the 
distribution

[minShap, maxShap]

20640 samples

8 (binarized) ÿeatures



Experimental results



Conclusions and ÿuture work
● InterpretinĀ SHAP as a ÿunction oÿ the distribution is a useÿul tool: our 

proposed problems provides insiĀht on the relative rankinĀs even in the 
presence oÿ uncertainty 

● The proposed problems are intractable, but “only” NP-complete

● The hypercube is a consequence oÿ choosinĀ uncertainty intervals 
→ any other distribution could be used (proper modellinĀ oÿ a Gaussian 
ÿor each ÿeature)

● Extend the work to non-binary models.
● Consider a different score such as LIME or RESP, and apply a similar 

ÿramework to obtain efficient alĀorithms.


