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What Is a Good Explanation?

W

Explanations are contrastive.

Humans usually do not ask why a certain prediction was made, but
why the prediction is made instead of another prediction.

INPUT mmp map OUTPUT

Explanations are selected.

We are used to selecting one or two causes rather than a variety
of possible causes the THE explanations.

BLACK BOX

Explanations are instructive.

We are looking for explanations that can provide practical guidance to enhance model
building, business operations, or individual decision-making.




=
—]
—

Interpretable Machine Learning
Making Black Box Models Explainable Humans .
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Counterfactual Explanations (CE)

Counterfactual Examples

ML model’s decision bﬂu;l;a;,}; ——

Original class: Desired class:
Loan rejected Loan approved

We expect to find a new data point showing
that small input difference leads to large
output difference

Original input

Generating explanations means generating
data

Date DTU Title 6



= Pioneering Research of CE

oo

Watcher et al., minimizing £(z) CE is first introduced

Lz, 2", y", A) = A(f(2) —y*)* + |z — ||
N = NI )+

Solved by grad'%h%%?&nual output Counterfactual
CE is found by solving

_ @qq%,s,irqqgfﬁ 2 Y phesemples jhe factual
fle —FEBE%FILXI( Usuaﬁyxyj_%b‘f (x,"% ) D .
optimization problem

Of | _Some observation in our interest
—— | Back-Propagation for x

I7counterfactual
To be found by optimization

Wachter, Sandra, Brent Mittelstadt, and Chris Russell. "Counterfactual
explanations without opening the black box: Automated decisions and

the GDPR." Harv. JL & Tech. 31 (2017): 841.
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A Stakeholder’s (Business Operator’s) View

i

mm To Ask

A

Business Revenue Forecasting b(d, )

[N | - m/\*

dividual spending
'Discount d '"Recommend r d 7’*)

INPUT -. mp OUTPUT

BLACK BOX
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A Stakeholder’s (Business Operator’s) View

oo
b
>4
3 To Ask
Business Revenue Forecasting b(d, ) oO_0
What if? 2
: _ )
| ] N Individual spending
' Discount d Recommend r ( )
b(d,r
Model sanity check Business operation
Purpose: Using counterfactual explanations Purpose: If we believe in the model, then use it
to understand the model’s behavior. to adjust the business operation strategy.
Example: Has the model learned correct Example: How to launch a successful

business logics? campaign?




A Stakeholder’s (Business Operator’s) View

HE

mm To Ask

Business Revenue Forecasting b(d, ) '
What if? r‘O

? ‘ _&}
le% h Individual spending

Discountd < = Recommen d r b(d T)
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Transportation Theory

W

The problem was formalized by the

W2 mmz ZW%J”X _ !/ H2 French mathematician Gaspard Monge
i=1 j=1 in 1781

1 Also named
;4 — "Wasserstein ! 4
j=1 n Distance” e
1 “Physical Movement” 7
7"'. e —
2= 7
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Optimal Transportation: A Joint Probability

i

High Dimension x?

SW? A W207x,07x') 6 optimal
transport
plan

S§d—1

T —




=
—]
—

Distributional Counterfactual

= .
Explanations (DCE)
Business Revenue Forecasting b(d, ) max P
What if? == o Ask st. P<P[SWA(x,x) < U.]

: P <P [W(b(x),y") < U,]

? B (@
| > 2
' Discount d 7

Recommend r Individual spending

b(d,r)

L. You, L. Cao, M. Nilsson, B. Zhao, and L. Lei, "Distributional Counterfactual Explanation With Optimal
Transport", International Conference on Artificial Intelligence and Statistics (AISTATS) 2025, accepted (Oral, top 2%).
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Distributional Counterfactual
Explanations (DCE)

Dvoretzky—Kiefer-Wolfowitz—Massart inequality (DKW

W

: ; . : max P
inequality) provides a bound on the worst-case distance x,P
/ 2
0 'x st. P <P[SW(x,x) < U,]
: : : 2 o
P <P[W(b(x),y*) < U,]
% X «
& & P Z 1 R
2
_ < Uy
1-46
P | W3(b(x),y*) < ! D(u)du| >1— @
T = 1-25 S B
def dkw(x, u, alpha): -
"""DKW lower and upper (l-alpha/2)-confidence bands for the g U.ZB
u-quantiles of a distribution, based on a sample x.""" r 1 1—5
2 / (s ; . _ g
"~ len(x) P|ISW(x,x") < 53 /Sf . Dg n(u)du (10_\(9)] > 1 5
gam = np.sqrit((1 / (2 * n)) * np.log(4 / alpha)) # 4 instead of 2. -
lower = sample quantile(x, u - gam) _ . . .
upper = _sample quantile(x, u + gam) Manole, T., Balakrishnan, S., and Wasserman, L.

(2022). Minimax confidence intervals for the sliced

return |lower, upper wasserstein distance. Electronic Journal of Statistics,
16(1):2252-2345.
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Distributional Counterfactual

o
o
- - Algorithm 1 Distributional counterfactual
Explan atlons (DCE) Require: x, y*, model b, projections O, bounds
U, U, and significance level a.
Ensure: Counterfactual x or &.
A . U / .

Q(Xwﬁrv:n):(l_ﬁ)'Qm(xrﬂ)_l_n'Qy(X:v) 1 X" x +0;t0

2: repeat

3:  p' <+ argmin, Q. (x', p)

2 ! * 1 p
SW™(x,x) W2 (b(x), y*) 4: V'« argmin, Q,(x",v)

5: W? + Eq. (10)

6: SW? <« Eq. (11)
0.10 _'_2 1 w 7:  n' < Algorithm 2 (or 3 in Appendix D)

0.4 We 8 VQ — ViQ (x, 1, vt )
—Uy 9: x'Tt « Retr(—7VQ)
0.05 0.3 0.5 10 t+t+1
—n 11: until thﬂ — xtH <e€
0.00 0.2 WMW ol (L,r) 12: if SW? < U, and W? < U, then
| | ‘ |
0 50 100 150 0 50 100 150 0 50 100 150 13:  return x'!
14: end if

15: return @
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Distributional Counterfactual

Explanations (DCE)

Risk Distribution
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Quantiles
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Job

The first werk on CE with

distriputioncd setue:
With rigorous statistca! guarantee for counterfactual
validity and counterfactual proximity
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Distributional Counterfactual
Explanations (DCE)

HE

20 Factual vs. Counterfactual (Risk Change)
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Conciseness In CE

Example: User engagement on an e-commerce platform

Counterfactual 1

Factual
(Observation)
X
@ [k ®
200 | 5 | No
150 | 3 | No
100 | 2 | No
150 | 6 | No

Z,
@[k ®
250 | 8 | Yes
150 [ 3 | No
350 | 9 | Yes
150 [ 6 | No

Desired Outcome
(Full Engagement)

*

Y

®

Counterfactual 2

1

Yes
Yes
Yes
Yes

Z
@[k ®
200 | 5 | No
150 | 7 | Yes
100 | 2 | No
350 | 6 | Yes
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Scientific Problem

i

Given a (group of) factual instance(s), how can we devise an action plan that
requires the least feature modifications to achieve a desired counterfactual out-

come?
Factual Counterfactual
X 7/ 7'’ y"
@ (k| ® @ (k| ® A ® ®
200 | 5 | No 250 | 8 | Yes 200 | 5 | No Yes
150 | 3 | No 150 | 3 | No 150 | 7 | Yes Yes
100 | 2 | No 350 | 9 | Yes 100 | 2 | No Yes
150 | 6 | No 150 | 6 | No 350 | 6 | Yes Yes
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Feature Attribution With Shapley Values

HE

i’s Shapley value 1’s marginal contribution

~— S|'(|D| - |S] = 1)!, —————
o0 = 3 SRR EUE - 0e) )
SCD\{i}« g ,
S’s weight

e Ace = 56| Random() ]Body Mass Index = 30 Random() _

Subset




Feature Attribution With Shapley Values

Missing values are simulated by a “background distribution”

Mg o

, \\,‘ H%%e fagual i Lei You, Yijun Bian, and Lele Cao
r Pl f 01 l
0. \ '0 Distribution .0 "Refining Counterfactual Explanations With Joint-

HE

o

Lt

S P s Distribution-Informed Shapley Towards Actionable
Minimality", ICLR 2025 8 (accept), 8 (accept), 6

Body Mass Index = 30 Random()
: (weak accept), 6 (weak accept) --- top 5%

Assumed KnowcCoswlitigriad iDistrondiate (Qanofellitirioneaioy CE algorithms)

Subset
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== Problem Formulation ) .
= y'=f (T) f (T) Ny
Original Counterfactuals Refined Counterfactuals
min D (f(z),y ) (Obtained from an arbitrary CE algorithm) (Supposed to be with less changes)
C.,Z

s.t. D(z,x) <e

n d

ZZ% <C

it < Mmoo
Zig 2 —Mecik = 1
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COunterfactual with Limited f(2)=y” y* = f(r)
Actions (COLA)

W

Data Mining and Knowledge Discovery (2024) 38:2770-2824
https://doi.org/10.1007/510618-022-00831-6

Step 1: Pick any 1 of the 2100 S,

Counterfactual explanations and how to find them:

eXiSti ng C E algorith ms literature review and benchmarking

Riccardo Guidotti'® Hundreds of algorithms are surveyed!

Obtain r and compute p

Received: 1 April 2021 / Accepted: 18 March 2022 / Published online: 28 April 2022
© The Author(s) 2022, corrected publication 2022

X — N Abstract
rl 1 712 Interpretable machine learning aims at unveiling the reasons behind predictions
T T returned by uninterpretable classifiers. One of the most valuable types of explana-
11 12 To 1 T 29 tion consists of counterfactuals. A counterfactual explanation reveals what should
= = have been different in an instance to observe a diverse outcome. For instance, a bank
:C2 1 :E22 T T customer asks for a loan that is rejected. The counterfactual explanation consists of
— 31 32 - what should have been different for the customer in order to have the loan accepted.
. Recently, there has been an explosion of proposals for counterfactual explainers. The
p (X 1..) <_ Optlmal aim of lhis work is to survey lhe- most recent explainers returning counterfactual
’ explanations. We categorize explainers based on the approach adopted to return the
TI'a,DSp O]:'t counterfactuals, and we label them according to characteristics of the method and

properties of the counterfactuals returned. In addition, we visually compare the expla-
nations, and we report quantitative benchmarking assessing minimality, actionability,
stability, diversity, discriminative power, and running time. The results make evident
that the current state of the art does not provide a counterfactual explainer able to
guarantee all these properties simultaneously.
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== COunterfactual with Limited f(2) =y" y" = f(r)
Actions (COLA)
Step 2: P-SHAP AShﬂp
Use p to compute Shapley ;i tells the importance of x;;
«9T 01 = ' 1T '
O S Y11 Pi12| |L11  L12
@ — Ashap P21 P22 |L21 X22]

o = [9011 9012]

Y21 P22
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COunterfactual with Limited
Actions (COLA)

W

Step 3: Computing the candidate
values for revising X later

Match x; to Fargmax ; p(r,

xC p 8r

c

q= [7"11 7“12]

%)

O

max
q — AValu

31 T32

AValue
- —
= = a1 T922
_35‘21 3322_
[7"11 192
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COunterfactual with Limited f(z) ~ y* « y* = f(r)
Actions (COLA)

Step 4: Computing the refined
counterfactaul Z

Get ¢ and z by ¢ and q » q= ri1 712

(11 =0.2 12 = 0.4
P22 — 0.1
C =2 .

_>CN{(172)7(271)} i | T11 Q12_
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Results Demonstration: Individual Change

\Y/| I\ [eYo [=] CE Algorithm

i

German Credits LightGBM DICE
Age Sex Job Housing Saving accounts Checking account Creditamount Duration Purpose Risk Reﬁ n e d

0 24 1 2 1 ‘ 2->0 ‘ 2 5595 72 5 1->0

1 33 1 2 2 2384 -> 6536 36 6 1->0

e 1 e [3e7] o [ Countertactual
3 23 0 1 0 2 14555 6-> 71 1 1->0

4 28 0 2 2->4 2 2278 18 1 1->0 A t.

5 45 1 1 1 1->0 4006 28 1 1->0 Z ( C ]-OHS)
6 39 2 0 0 3 1271 -> 3096 ‘ 15 5 1->0

7 42 2 1 1 1->3 4153 18 4 1->0

g 24 0 2 1 2 2150 30->6 1 1->0

9 31 2 1 2 1935 -> 6380 24 0 1->0
10 48 0 1 0 2 3 1240 -> 5706 10 1 1->0 43% LeSS
1M1 29 2 1 1 1->3 6887 36 3 1->0
12 37 1 1 0 3->0 1344 24 1 1->0 bt
13 25 0 2 1 1 0 7855 -> 1340 36 1 1->0 A.Ct ].OI].S Taken
14 47 2 0 2 2 12612 -> 6392 36 3 1->0
15 30 0 3 1 2 5096 48 -> 15 4 1->0
16 23 0 2 2 1->4 ‘ 1 1442 24 1 1->0
17 42 2 1 1 3446 -> 7770 36 4 1->0
18 39 3 1 1 ‘ 2->0 11938 24 7 1->0
19 27 3 0 1 1422 -> 3825 9 1 1->0

DTU
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Results Demonstration: Group Change

ML Model CE Algorithm

Hotel Bookings XGBoost DICE

Features Target

i

Refined

Countertactual
z (31 Actions)

72% Less
Actions Taken




Overall Performance

DiCE (Mothilal et al., 2020), AReS (Rawal & Lakkaraju, 2020), GlobeCE
(Ley et al., 2023), KNN (Albini et al., 2022; Contardo et al.; Forel et al., 2023), Dis-
count (You et al., 2024)

Bagging, LightGBM, Support Vector Machine (SVM), Gaussian Process (GP), Radial Basis
Function Network (RBF), XGBoost, Deep Neural Network (DNN), Random Forest (RndFor-
est), AdaBoost, Gradient Boosting (GradBoost), Logistic Regression (LR), Quadratic Dis-
criminant Analysis (QDA)

80% 100%
Counterfactual Counterfactual
Effect Effect

Dataset

German Credits
(Features = 9)

Hotel Bookings
(Features=29)

COMPAS
(Features=15)

HELOC
(Features=23)

Date DTU

No assumptions on CE or ML models

E.g. no assumptions on:

» ML Model architecture like tree-based etc.
* ML Model’s differentiability

» CE algorithms

Physical Meaning of P-SHAP

j=m
Wi (f(x),y") < L\ > Pl — 413
1=1

Guaranteed proximity
|z —x|[p < [r —x[|p

Low computational complexity

Title 33
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from
from
from
from

xai cola import ml _model interface
counterfactual explainer import DiCE

arXiv 2410.05419 § License MIT

xai_cola import data_interface

Xai_cola.counterfactual limited actions import COLA

# Initialize the COLA
refiner = COLA(
data=data,
ml_model=ml_model,

# Choose the policy
refiner.set_policy(

Xx_factual=factual,

X_counterfactual=counterfactual,

)

matcher="ect", # We prefer "ect_matcher" with DiCE, you can also

attributor="pshap",

Avalues_method="max"

)

# Choose the number of actions

factual,

ce,

dce

refiner.get refined counterfactual(limited_actions=18)

factual

Age
27
31
34
20
29
22
24
53

N o e W O

factaul

Age
27
31
34
20
29
22
24
53

~N o R W N s O

() w
SV IL.CIRN U T RV [ C IR SC R NI N
w o

factual

Age
27
31
34
20
29
22
24
53

I T, R VR S =1

Sex
1

1
0
0
1
0
0
1

0

GitHub

Counterfactual explanations with Limited
Actions (COLA)

Job Housing Saving accounts Checking account Credit amount Duration Purpose Risk
2 1 1 1 3552 24 4 1
2 2 1 1 3161 24 0 1
3 1 1 2 2064 24 4 1
2 2 1 1 2039 18 4 1
3 1 1 2 11328 24 7 1
2 1 2 1 741 12 2 1
2 2 1 1 1207 24 1 1
2 0 1 1 7119 48 4 1

-> corresponding counterfactual

Sex

1
1
0
0
1
0
0
1

Job Housing Saving accounts Checking account Credit amount

O M= a2

1
1
1->2

1
1
2
1
1

-> action-limited counterfactual

Sex

1
1
0
0
1
0
0
1

Job Housing Saving accounts Checking account Credit amount

2
2
3
2
3
2
2
B

[ TR S T SO Oy Y

1

1
1
1
1
2
1
1

Duration Purpose Risk
1 3552 -> 1886 24 4 1->0
1 3161 24 -> 20 | 0 1->0
2 2064 -> 3077 24 4 1->0
1 2039 -> 9594 18 4 1->0
2 11328 -> 4852 24 7 1->0
->2 741 -> 10076 12 2 1->0
1 1207 -> 4342 | 24->19 1 1->0
1 7119 48 -> 32 4 1->0

Duration Purpose  Risk
1 3552 -> 1886 24 4 1->0
1 3161 24 -> 20 | 0 1->0
2 2064 -> 3077 24 4 1->0
1 2039 -> 9594 18 4 1->0
2 11328 -> 4852 24 7 1->0
1 741 -> 10076 12 2 1->0
1 1207 -> 4342 | 24->19 1 1->0
1 7119 48 > 32 4 1->0
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Summary

Lei You, PhD

Assistant Professor in Applied Mathematics
Technical University of Denmark (DTU)

In this talk, we explore advanced techniques in Explainable Al (XAIl) by integrating concepts from optimal transport
theory, a mathematical framework for comparing and aligning distributions. Two themes are covered:

Distribution Pattern as Explanations

Factual What if?
N = Observed N o
/\ == To Ask /\
N -~
Discount d ~ Discount d 7
/\ | /\ [] ?
|_ —|_|—| ~ Individual spending |— _l—l—l N
Recommend 7’/ b(CE,’."‘) Recommend :r*/

Traditional counterfactual explanations focus on changing
individual inputs to see how they affect outcomes, but they often
miss the bigger picture of how groups of data points relate to one
another. We extend traditional counterfactual explanations by
introducing Distributional Counterfactual Explanation (DCE),
which shifts from focusing solely on individual input changes to
considering broader patterns within the entire data distribution.
As a result, our approach provides stakeholders with valid
counterfactual distributions supported by statistical confidence.

Explanations With Actionable Minimality
Given a (group of) factual instance(s), how can we devise an action plan that re-
quires the least feature modifications to achieve a desired counterfactual ourcome?

! *

=

X z' z y
olLYEC HeRLIEC @k ® ®
200 | 5 | No 250 | 8 | Yes 200 | 5 | No Yes
150 | 3 | No 150 | 3 | No 150 7 Yes Yes
100 | 2 | No 350 | 9| Yes 100 | 2 | No Yes
150 | 6 | No 150 | 6 | No 350 | 6 | Yes Yes

We refine counterfactual explanations to enhance actionable
efficiency by minimizing unnecessary feature changes,
ensuring the proposed interventions are both valid and
practical. Using optimal transport, we derive a joint
distribution between observed and counterfactual data, which
informs Shapley values for more precise feature attributions.
This approach ensures minimal, realistic changes that make
explanations more feasible and impactful for stakeholders.
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é AHA Lei You, PhD
RN 2 A @
A

( | Assistant Professor in Applied Mathematics

Summary 'ﬂ Physics

( N ,\;
( AN
]@ \) AR ’\\\J‘)

Optimal transport has a physical interpretation of generating data (i.e. explanations)

Technical University of Denmark (DTU)

W

Distribution Pattern as Explanations Explanations With Actionable Minimality

fa ot A 17 . . . . .
Factual What if* Given a (group of) factual instance(s), how can we devise an action plan that re-

/N = Observed AN o quires the least feature modifications to achieve a desired counterfactual ourcome?
/\ mm To Ask /\
~ N x 7! 7! y*
Discount d ~ Discount d @k ® ‘ @@ (] ® @Dk ® ®
A — A ) 200 | 5 | No 250 | 8 | Yes 200 | 5 | No Yes
| = ? 150 | 3 | No | 150 | 3 | No 150 | 7 | Yes Yes
|— _—I_I—l 100 | 2 | No 350 | 9 | Yes 100 | 2 | No Yes
|_ —|_|—| ~  Individual spending > 150 | 6 | No ‘ 150 | 6 | No 350 | 6 | Yes Yes
Recommend r/ b(CE,T) Recommend r
y A

optimal
transport
plan, T*
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