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Eample 1: Cloud Application

Can we resolve the 
issue by fixing a 
single service, or 
do we need to fix 
multiple 
components?
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Example 2: Credit Risk Prediction

Which features were respondible for the rejection of the 
credit application?
Was it a single feature, or the combination of multiple 
features?
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Blackbox 
Model



What do existing methods do?

• Popular SHAP method (Lundberg and Lee, 2017) ranks and quantifies 
importance of individual features

 1. credit purpose
 2. housing situation
 3. personal status
 4. …

 But what combination of features was crucial for the outcome? 
 How many features are actually required to explain the models 
 decision? 

5



What does ICECREAM do instead? 

• Identifying Coalition-based Explanations for Common and Rare 
Events in Any Model 

• Detects combinations of variables whose interplay explain a 
certain outcome of a model or system

• Can be used for explainability and interpretability of any feature-
target system

• Can be applied to perform root cause analysis (RCA) in any 
system with known causal structure
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Background: Graphical Causal 
Models
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Background: Graphical Causal Models (GCM)

• Causal graph 𝐺 = 𝑉, 𝐸

• Nodes = random variables 𝑉 = {𝑉1, … , 𝑉𝑁}

• Edges Vi → 𝑉𝑗 ∈ 𝐸 represent causal relationships
• We split 𝑉 as follows:
 𝑌 = target variable whose value we 
        want to explain
 𝑋𝑖= observed variables
 Λ𝑖= unobserved variables
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Figure1: Graphical causal model for Example 1. ThevariablesX 1 and X 2 independently follow

Bernoulli distributions, whileY is completely determined by thevaluesof its causal parents.

Table 1: All possible outcomes for Example 1. Additionally, weprovide theexplanation scores from

Eq. (2) in Section 3 for parameter valuesp1 = 0.1, p2 = 0.8.

case1: case2: case3: case4:

x1 0 0 1 1

x2 0 1 0 1

y 0 0 0 1

E({ X 1} ) 1.0 1.0 →18.3 0.9

E({ X 2} ) 1.0 →0.3 1.0 0.1

E({ X 1, X 2} ) 1.0 1.0 1.0 1.0

(e.g. Lundberg and Lee, 2017; Fryer et al., 2021) to counterfactual reasoning (e.g. Keaneand Smyth,

2020; von Kügelgen et al., 2023). In many applications, however, theexplanation for an event is not

just thebehavior of asingle factor, but the combination of multiple factors that only jointly result in

theobserved outcome.

Identifying which coalition of factors is responsible for an outcomeprovides valuable insights

into thesystem under consideration. Onesuch insight, for instance, is understanding which input

factors need to bechanged to obtain adesired change in theoutput. Let us takea look at two simple

exampleswherenot asingle factor, but acoalition of variables is important for acertain outcome:

Example 1 Consider a cloud computing application that is set up with redundancies to prevent

errors from propagating through the system. The system only fails when multiple components

experience an issue. A simple example of such a system are two binary input variables X 1 and

X 2 and a binary target Y . The input variables independently follow Bernoulli distributionswith

parametersp1 and p2, respectively, and the target value y is thedeterministic AND of the inputs:

Y = X 1 ↑ X 2. The corresponding graphical model is shown in Figure1 and all possible outcomes

for this setup can be found in Table1. As long asat least oneof the two input factors is “ healthy”

(i.e., X 1 = 0 or X 2 = 0), the target does not experience an issue. However, if both inputs encounter

an error (i.e., X 1 = X 2 = 1), this leads to a failure in the target Y .
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Background: Graphical Causal Models (GCM)

• Intervention: set variable 𝑉𝑖  to some value 𝑣𝑖  while all other 
variables keep their relationships

• Represented as cutting all incoming edges at the intervened 
variable

• Interventional distribution

 ℙ 𝑉𝑗  𝑑𝑜 𝑉𝑖 = 𝑣𝑖 ] = ℙ 𝑉𝑗  𝑑𝑜 𝑉𝑖 ] ≠∗ ℙ[𝑉𝑗| 𝑉𝑖 = 𝑣𝑖]

 
  * only equal if 𝑉𝑖  has no causal parents
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ICECREAM
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Question:

What is the smallest coalition of variables which fully explains the 
target value 𝒚 for an observation 𝒗?

→Define an explanation score that quantifies the influence of a set 
of 

     variables on the target variable
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Desired Properties of the Explanation Score

1. The explanation score of a coalition is not just the sum of the 
explanation scores of the individual variables.

     Event: 𝑦 = 0, 𝑥1 = 0, 𝑥2 = 0

     Already 𝑥1 = 0 fully explains  𝑦 = 0, 
     similarly does 𝑥2 = 0 
     → the coalition {𝑋1, 𝑋2} should not 
get          a higher score than {𝑋1} or {𝑋2}
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Figure1: Graphical causal model for Example 1. ThevariablesX 1 and X 2 independently follow

Bernoulli distributions, whileY is completely determined by thevaluesof its causal parents.

Table 1: All possible outcomes for Example 1. Additionally, weprovide theexplanation scores from

Eq. (2) in Section 3 for parameter valuesp1 = 0.1, p2 = 0.8.

case1: case2: case3: case4:

x1 0 0 1 1

x2 0 1 0 1

y 0 0 0 1

E({ X 1} ) 1.0 1.0 →18.3 0.9

E({ X 2} ) 1.0 →0.3 1.0 0.1

E({ X 1, X 2} ) 1.0 1.0 1.0 1.0

(e.g. Lundberg and Lee, 2017; Fryer et al., 2021) to counterfactual reasoning (e.g. Keaneand Smyth,

2020; von Kügelgen et al., 2023). In many applications, however, theexplanation for an event is not

just thebehavior of asingle factor, but the combination of multiple factors that only jointly result in

theobserved outcome.

Identifying which coalition of factors is responsible for an outcomeprovides valuable insights

into thesystem under consideration. Onesuch insight, for instance, is understanding which input

factors need to bechanged to obtain adesired change in theoutput. Let us takea look at two simple

exampleswherenot asingle factor, but acoalition of variables is important for acertain outcome:

Example 1 Consider a cloud computing application that is set up with redundancies to prevent

errors from propagating through the system. The system only fails when multiple components

experience an issue. A simple example of such a system are two binary input variables X 1 and

X 2 and a binary target Y . The input variables independently follow Bernoulli distributionswith

parametersp1 and p2, respectively, and the target value y is thedeterministic AND of the inputs:

Y = X 1 ↑ X 2. The corresponding graphical model is shown in Figure1 and all possible outcomes

for this setup can be found in Table1. As long asat least oneof the two input factors is “ healthy”

(i.e., X 1 = 0 or X 2 = 0), the target does not experience an issue. However, if both inputs encounter

an error (i.e., X 1 = X 2 = 1), this leads to a failure in the target Y .
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Desired Properties of the Explanation Score

2. Rare events get a higher explanation score than common 
events.

     Event: 𝑦 = 1, 𝑥1 = 1, 𝑥2 = 1

     Consider 𝑝1 = 0.001, 𝑝2 = 0.9:
      → 𝑋1 is the more interesting  
           explanation
     → score for {𝑋1} should be higher 
than          for {𝑋2}
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Figure1: Graphical causal model for Example 1. ThevariablesX 1 and X 2 independently follow

Bernoulli distributions, whileY is completely determined by thevaluesof its causal parents.

Table 1: All possible outcomes for Example 1. Additionally, weprovide theexplanation scores from

Eq. (2) in Section 3 for parameter valuesp1 = 0.1, p2 = 0.8.

case1: case2: case3: case4:

x1 0 0 1 1

x2 0 1 0 1

y 0 0 0 1

E({ X 1} ) 1.0 1.0 →18.3 0.9

E({ X 2} ) 1.0 →0.3 1.0 0.1

E({ X 1, X 2} ) 1.0 1.0 1.0 1.0

(e.g. Lundberg and Lee, 2017; Fryer et al., 2021) to counterfactual reasoning (e.g. Keaneand Smyth,

2020; von Kügelgen et al., 2023). In many applications, however, theexplanation for an event is not

just thebehavior of asingle factor, but the combination of multiple factors that only jointly result in

theobserved outcome.

Identifying which coalition of factors is responsible for an outcomeprovides valuable insights

into thesystem under consideration. Onesuch insight, for instance, is understanding which input

factors need to bechanged to obtain adesired change in theoutput. Let us takea look at two simple

exampleswherenot asingle factor, but acoalition of variables is important for acertain outcome:

Example 1 Consider a cloud computing application that is set up with redundancies to prevent

errors from propagating through the system. The system only fails when multiple components

experience an issue. A simple example of such a system are two binary input variables X 1 and

X 2 and a binary target Y . The input variables independently follow Bernoulli distributionswith

parametersp1 and p2, respectively, and the target value y is thedeterministic AND of the inputs:

Y = X 1 ↑ X 2. The corresponding graphical model is shown in Figure1 and all possible outcomes

for this setup can be found in Table1. As long asat least oneof the two input factors is “ healthy”

(i.e., X 1 = 0 or X 2 = 0), the target does not experience an issue. However, if both inputs encounter

an error (i.e., X 1 = X 2 = 1), this leads to a failure in the target Y .
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Desired Properties of the Explanation Score

3. Explanation scores in anti-causal direction are zero.

     𝑌 cannot influence 𝑋1 or 𝑋2

     → effects cannot explain their causes
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Figure1: Graphical causal model for Example 1. ThevariablesX 1 and X 2 independently follow

Bernoulli distributions, whileY is completely determined by thevaluesof its causal parents.

Table 1: All possible outcomes for Example 1. Additionally, weprovide theexplanation scores from

Eq. (2) in Section 3 for parameter valuesp1 = 0.1, p2 = 0.8.

case1: case2: case3: case4:

x1 0 0 1 1

x2 0 1 0 1

y 0 0 0 1

E({ X 1} ) 1.0 1.0 →18.3 0.9

E({ X 2} ) 1.0 →0.3 1.0 0.1

E({ X 1, X 2} ) 1.0 1.0 1.0 1.0

(e.g. Lundberg and Lee, 2017; Fryer et al., 2021) to counterfactual reasoning (e.g. Keaneand Smyth,

2020; von Kügelgen et al., 2023). In many applications, however, theexplanation for an event is not

just thebehavior of asingle factor, but the combination of multiple factors that only jointly result in

theobserved outcome.

Identifying which coalition of factors is responsible for an outcomeprovides valuable insights

into thesystem under consideration. Onesuch insight, for instance, is understanding which input

factors need to bechanged to obtain adesired change in theoutput. Let us takea look at two simple

exampleswherenot asingle factor, but acoalition of variables is important for acertain outcome:

Example 1 Consider a cloud computing application that is set up with redundancies to prevent

errors from propagating through the system. The system only fails when multiple components

experience an issue. A simple example of such a system are two binary input variables X 1 and

X 2 and a binary target Y . The input variables independently follow Bernoulli distributionswith

parametersp1 and p2, respectively, and the target value y is thedeterministic AND of the inputs:

Y = X 1 ↑ X 2. The corresponding graphical model is shown in Figure1 and all possible outcomes

for this setup can be found in Table1. As long asat least oneof the two input factors is “ healthy”

(i.e., X 1 = 0 or X 2 = 0), the target does not experience an issue. However, if both inputs encounter

an error (i.e., X 1 = X 2 = 1), this leads to a failure in the target Y .
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Desired Properties of the Explanation Score

4. The explanation score of a variable is not depend on how the 
other variables are grouped into coalitions.

     For the influence of 𝑋1 on 𝑌 it should 
     not matter if 𝑋2 is actually a 

single      variable, or the 
aggregation of multiple     variables with the 
same effect on 𝑌
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Figure1: Graphical causal model for Example 1. ThevariablesX 1 and X 2 independently follow

Bernoulli distributions, whileY is completely determined by thevaluesof its causal parents.

Table 1: All possible outcomes for Example 1. Additionally, weprovide theexplanation scores from

Eq. (2) in Section 3 for parameter valuesp1 = 0.1, p2 = 0.8.

case1: case2: case3: case4:

x1 0 0 1 1

x2 0 1 0 1

y 0 0 0 1

E({ X 1} ) 1.0 1.0 →18.3 0.9

E({ X 2} ) 1.0 →0.3 1.0 0.1

E({ X 1, X 2} ) 1.0 1.0 1.0 1.0

(e.g. Lundberg and Lee, 2017; Fryer et al., 2021) to counterfactual reasoning (e.g. Keaneand Smyth,

2020; von Kügelgen et al., 2023). In many applications, however, theexplanation for an event is not

just thebehavior of asingle factor, but the combination of multiple factors that only jointly result in

theobserved outcome.

Identifying which coalition of factors is responsible for an outcomeprovides valuable insights

into thesystem under consideration. Onesuch insight, for instance, is understanding which input

factors need to bechanged to obtain adesired change in theoutput. Let us takea look at two simple

exampleswherenot asingle factor, but acoalition of variables is important for acertain outcome:

Example 1 Consider a cloud computing application that is set up with redundancies to prevent

errors from propagating through the system. The system only fails when multiple components

experience an issue. A simple example of such a system are two binary input variables X 1 and

X 2 and a binary target Y . The input variables independently follow Bernoulli distributionswith

parametersp1 and p2, respectively, and the target value y is thedeterministic AND of the inputs:

Y = X 1 ↑ X 2. The corresponding graphical model is shown in Figure1 and all possible outcomes

for this setup can be found in Table1. As long asat least oneof the two input factors is “ healthy”

(i.e., X 1 = 0 or X 2 = 0), the target does not experience an issue. However, if both inputs encounter

an error (i.e., X 1 = X 2 = 1), this leads to a failure in the target Y .
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Formal Definition of ICECREAM’s Explanation 
Score
Definition 1: Let 𝒟𝒴  denote the set of all probability distributions 
over the domain 𝒴. Further let 𝐷: 𝒟𝒴

2 → ℝ be a distance measure to 
quantify the distance between distributions in 𝒟𝒴. The explanation 
score of the coalition 𝑉𝐶 ⊆ 𝑉 with respect to the observation 𝑣 ∈ 𝒱 
is then defined as the function ℰ𝑣: 2𝐼 → −∞, 1  with
 

  ℰ𝑣 𝑉𝐶 = 1 −
𝐷 ℙ 𝑌  𝑑𝑜 𝑉𝐶 , ℙ 𝑌  𝑑𝑜(𝑉)])

𝐷(ℙ 𝑌 , ℙ 𝑌  𝑑𝑜 𝑉 ]) 
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Intuition behind ICECREAM’s Explanation 
Score

ICECREAM

DY

P[Y ]

P[Y | do(VC )]

P[Y | do(V )] = ωy
D (P[Y ],P[Y | do(V )])

D (P[Y | do(VC )],P[Y | do(V )])

Figure2: Distancesconsidered for theexplanation score. In thespaceDY of all distributionson the

domain Y, weconsider (1) thedistribution P[Y | do(V )] whereall variables in thesystem havebeen

fixed to somevalues v , (2) thedistribution P[Y | do(VC )] where only thevalues of the coalition VC
havebeen fixed, and (3) thedistribution P[Y ] whereno valuesarefixed. If fixing the coalition values

reduces thedistance to thepoint massdistributionωy (red distance) compared to fixing nothing (blue

distance), weconclude that thecoalition providesat least apartial explanation for thevalueY = y.

In this case theexplanation score isEv (VC ) > 0. If thedistribution after fixing thecoalition even

equals thepoint massdistribution, thecoalition fully explains thevaluey and getsan explanation

scoreof Ev (VC ) = 1. On theother hand, if fixing the coalition values increases thedistance to the

point massdistribution compared to fixing nothing, then thecoalition isnot explaining thevalueof

Y at all, and getsanegativeexplanation scoreEv (VC ) < 0.

In practical applications and for the remainder of thiswork, weuse theKL divergence (i.e., the

cross-entropy) between probability distributions as thedistancemeasure for theexplanation score:

D (P,Q) := DK L (Q||P ) (notetheargument swap). With theKL divergenceandP[Y | do(V )] = ωy ,

theexplanation score simplifies to

Ev (VC ) = 1→
logP[Y = y | do(VC )]

logP[Y = y]
. (2)

To identify theminimal coalitions that explain the target value, we loop through all possible

coalitions of variablesVC , ordered by increasing size, and calculate theexplanation score for each

coalition. For any coalition size k, we check if there is at least onecoalition whoseexplanation score

reaches a given threshold ε ↑ [0,1].3 If so, we return all coalitions of this size with E(C) ↓ ε .

Otherwise, we proceed to coalitions of size k + 1.4 Note that this procedure will not return all

coalitions explaining the target value, but the set of thesmallest coalitions explaining the target value

by thedesired degree. With aminimum-size coalition with explanation scoreequal to one (which

wecall aminimal full explanation), wecan traceback theobserved target value to aminimal set of

variables that produced this target value; thusweobtain themost concise causal explanation possible

for theobservation.

In many situationswenot only want to know why something happened, but also what weneed

to do to obtain another (desired) outcome. Wecan also leverage ICECREAM and its explanation

score for this related task: From Property 4 we know that, for a coalition with explanation score

Ev (VC ) = 1, it only makessense to interveneon (asubset of) thevariables of thecoalition VC to

change theoutcome. Hencewecan start thesearch for an optimal intervention by looping through

all possible values of the variables in the coalition VC and identifying the one that maximizes

the explanation score for a desired target value y→. This approach is analogous to the directive

3. Note, to find coalitions fully explaining the target value it should beω = 1. In practice we choose slightly lower

thresholds and accept “good” explanations by small coalitions instead of full explanations by largeones.

4. SinceEv (V ) = 1 for any observation v , this procedure isguaranteed to terminate.
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Further Properties of the Explanation Score

• ℰ𝑣 𝑉𝐶 > 0 iff fixing coalition values gets the distribution of the 
target closer to the point mass distribution 𝑌 ∼ 𝛿𝑦

• ℰ𝑣 𝑉𝐶 < 0 iff fixing coalition values moves the distribution of the 
target further away from the point mass distribution 𝑌 ∼ 𝛿𝑦

• ℰ𝑣 𝑉𝐶 = 0 iff fixing coalition values does not change the distance 
to the point mass distribution 𝑌 ∼ 𝛿𝑦

• ℰ𝑣 𝑉𝐶 = 1 iff ℙ 𝑌 𝑑𝑜(𝑉𝐶)] = 𝛿𝑦 , and we say the coalition fully 
explains the target value
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Further Properties of the Explanation Score

• If a variable 𝑉𝑖  is irrelevant for 𝑌, it does not change the 
explanation score when it is added to a coalition 

• If ℰ𝑣 𝑉𝐶 = 1, then all coalitons containing 𝑉𝐶  also have 
explanation score 1

• For values smaller than 1, the explanation score is not monotonic 
since some variables can have contradictory evidence for an 
outcome (unless a coalition already fully explains that outcome)

• If ℰ𝑣 𝑉𝐶 = 1, there exists no variable outside of 𝑉𝐶  that could 
change the value of 𝑌
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Practical Application of ICECREAM’s 
Explanation Score
• Use KL-divergence as distance measure, simplifies explanation 

score  

  ℰ𝑣 𝑉𝐶 = 1 −
𝑙𝑜𝑔 ℙ 𝑌  𝑑𝑜 𝑉𝐶 )

𝑙𝑜𝑔(ℙ 𝑌 ) 

• Loop through all possible coalitions, starting with smallest 
• Stop when explanation score reaches a threshold 𝛼 for some 

value 𝛼 ∈ [0, 1] (close to 1)
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Experiments and Results
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RCA in Cloud Application

• System architecture is known (domain knowledge)
• Causal graph is inverted system topology
• Services produce errors with different probabilities
• Errors from parents are propagated if there are many enough
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RCA in Cloud Application

• Compared to RCA method 
by Budhathoki et al. (2022) 
and a simple traversal 
algorithm

• Only ICECREAM identifies 
the correct set of root 
causes if more than 1 issue 
is happening in the system

23
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Figure 4: Accuracy for the identification of root causesof issues in acloud computing application. If

theground truth root causeonly consists of two errors in the system, most methods for RCA areable

to identify themwith 100% accuracy. However, if the issue is the result of acombination of more

than two errors, only ICECREAM isable to identify the coalition of failing services correctly, while

theperformance of theother RCA methodsdrops drastically.

(picking all features whose individual contribution value reaches the threshold, denoted with -i).

Finally, weadd asimple traversal algorithm asbaselinewherewe identify anomalies and consider

thefirst anomaly in thegraph as the root causeof the issue (seeAppendix C.3.3).

For ICECREAM we consider the set of noise variables ! as the potential root causes and

hence look for theminimal coalition VC = ! C explaining an error at the target service Y . This

choice follows the argumentation in Budhathoki et al. (2022). The advantage of intervening on

thenoise variables is that the connections among theobserved variables remain unchanged. This

way it is possible to identify the variable which shows not just anomalous behavior per se, but

anomalous behavior conditioned on thebehavior of its parents. This allowsus to identify the actual

root cause of an event, instead of just identifying the variable with the most abnormal behavior.

However, intervening on theunobserved noisevariables ishighly non-trivial in practice. Nevertheless,

for the error propagation in this application we can estimate the conditional noise distribution

P[! | X = x ] from the observations given the dependency structure of the application. With

thisweareable to compute an expected explanation scoreover this noisedistribution: Ēv (! C ) :=

Eω→! |X = x [Eω(! C )].

Wecompare themethodswith respect to accuracy. For ICECREAM, the root causeof asample

counts ascorrectly identified if and only if all identifiedminimal coalitions are correct. For theother

methods, the root cause counts as correctly identified if the returned set of root causes is correct.
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Explain ML Model’s Credit Risk Prediction

• Use the South German Credit data set (Grömping 2019) to train an 
ML model to predict if a credit application has high or low risk

• Consider the “real world” as a common         
cause to the input features, which then               
do not directly causally influence each other

• Compare ICECREAM to SHAP method

24



Explain ML Model’s Credit Risk Prediction

• When fixing the values of the coalition identified with ICECREAM, 
the prediction remains stable

• For the top features identified by SHAP the prediction remains 
also stable, but not as long as for ICECREAMs coalition

25
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Figure 3: Stability of the prediction of an ML model when randomizing features. We randomize

the values of the features in increasing order based on the SHAP values (blue), while ensuring

that the features of theminimal coalition identified by ICECREAM are randomized last (green),

and in completely random order (red). For the randomized features wepick 1,000 samples from

their data distribution and check whether the model output changes. We do this for the sample

mentioned in Example 2 (solid lines) and over all samples for which a coalition with four or less

componentswas identified (dashed lineand colored area representing averageand 95% quantile).

Themodel prediction remains stable as long as the features in theminimal coalition identified by

ICECREAM remain fixed. When strictly following theSHAPvalueorder, theprediction showsa

very similar behavior. While both approaches lead to drastically morestability in themodel output

than randomizing over the features in completely random order, akey feature of ICECREAM in this

context is that theminimum-size coalitions include information about thenumber of features needed

for stablepredictions, while theSHAPvalues only providean order of relevance.

On thismodel wecompare ICECREAM and the instance-wise scoresof thepopular explainabil ity

framework SHAP(Lundberg and Lee, 2017).

To obtain the interventional distributions required in ICECREAM, we follow the reasoning of

Janzing et al. (2020) and consider the real world to beaconfounder of the input features of anML

model, which therefore do not have direct causal links among each other. Consequently, we can

intervenedirectly on the input features by simply fixing the valuesof the features belonging to the

considered coalition while sampling the remaining features from their (joint) marginal distribution.

Further, wechoosea threshold of ω= 0.9998 to identify coalitionswith (almost) full explanations

while allowing for numerical errors. Additionally, weset themaximum coalition size to k = 4 and

stop theprocedure if wedo not find acoalition exceeding the threshold at this size. For SHAPwe

normalize theSHAPvalues to get the relative importance of the features.

While ICECREAM returns thecoalitions of featureswith explanation scoreexceeding theset

threshold, SHAPhasno notion of coalitions and providesa ranking of thedifferent features given

by their individual contribution scores. Hence the results arenot directly comparable. Nevertheless,

wecan investigatewhether the identified coalitions (for ICECREAM) and theset of top-k features

(for SHAP) are sufficient to determine the target label. For thisweconsider the samples for which

we identify at least one coalition exceeding the set threshold for the explanation score. For each

samplewerandomize the input features in ascending order of theSHAPvalues for this sample, and

create new predictions from the trained model (seeFigure3, blue lines). Then wedo thesame, but
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Conclusion

• Novel approach for explainability and RCA
• Able to identify minimal coalitions explaining a target value
• Novel explanation score satisfying all desired properties
• Evaluated on different data sets and with different use cases

• Explain ML model: comparable performance to popular SHAP method
• RCA in cloud application: outperforms state-of-the art methods when 

multiple root causes are present

• For practical applications, a more efficient algorithm needs to be 
developed, particularly for identifying optimal interventions
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Questions?
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