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Eample 1: Cloud Application
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Example 2: Credit Risk Prediction
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Which features were respondible for the rejection of the
Q credit application?

Was it a single feature, or the combination of multiple
features?



What do existing methods do?

* Popular SHAP method (Lundberg and Lee, 2017) ranks and quantifies
Importance of individual features

1. credit purpose

2. housing situation
3. personal status
4. ...

But what combination of features was crucial for the outcome?
How many features are actually required to explain the models

decision?




What does ICECREAM do instead?

* /dentifying Coalition-based Explanations for Common and Rare
Events in Any Model

* Detects combinations of variables whose interplay explain a
certain outcome of a model or system

* Can be used for explainability and interpretability of any feature-
target system

* Can be applied to perform root cause analysis (RCA) in any
system with known causal structure



Background: Graphical Causal
Models



Background: Graphical Causal Models (GCM)

e Causalgraph G = (V,E)
* Nodes = random variables V = {l/;, ..., Vy}
* Edges V; = V; € E represent causal relationships

* We split IV as follows:

Y =target variable whose value we

want to explain @ @
X;= observed variables y
A;=unobserved variables



Background: Graphical Causal Models (GCM)

* Intervention: set variable V; to some value v; while all other
variables keep their relationships

* Represented as cutting all incoming edges at the intervened
variable

* Interventional distribution
P|V; | do(V; = v)] = P|V; | do(V)] #* P[V;| V; = v{]

*only equal if I/; has no causal parents



ICECREAM



Question:

What is the smallest coalition of variables which fully explains the
target value y for an observation v?

- Define an explanation score that quantifies the influence of a set
of

variables on the target variable
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Desired Properties of the Explanation Score

1.

get

The explanation score of a coalition is not just the sum of the
explanation scores of the individual variables.

S

Y

X1 ~ Bern(p;)
X2 ~ Bern(ps)

Y = X1 AN X

Event:y =0,x; =0,x, =0

Already x; = 0 fully explains y = 0,
similarly does x, =0

-> the coalition {X, X5} should not
a higher score than {X; } or {X,}
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Desired Properties of the Explanation Score

2. Rare events get a higher explanation score than common

events.

X; ~ Bern(p;)
Xy ~ Bern(ps)

Y = X5 N X,

than

Event:y =1,x; =1,x, =1
Considerp; = 0.001,p, = 0.9:

—> X, is the more interesting
explanation

—> score for {X;} should be higher
for {X,}
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Desired Properties of the Explanation Score

3. Explanation scores in anti-causal direction are zero.

S

Y

X; ~ Bern(p;)
X2 ~ Bern(ps)

Y = X1 N X>

Y cannot influence X; or X,
- effects cannot explain their causes
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Desired Properties of the Explanation Score

4. The explanation score of a variable is not depend on how the
other variables are grouped into coalitions.

Sing

agg

S

Y

X1 ~ Bern(p;)
X2 ~ Bern(ps)

Y = X1 AN X

same effectonY

For the influence of X; onY it should
not matter if X, is actually a
variable, or the
variables with the
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Formal Definition of ICECREAM'’s Explanation
Score

Definition 1: Let D¢, denote the set of all probability distributions
over the domain Y. Further let D: 2)12/ — IR be a distance measure to

quantify the distance between distributions in Dy,. The explanation
score of the coalition V. € V with respect to the observationv € V
is then defined as the function £,: 2! - (—, 1] with

D(P[Y| do(Ve)], PlY| do(V)])
D(P[Y], P[Y| do(V)])

8v(VC) =1-
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Intuition behind ICECREAM’s Explanation
Score

Dy PLY | do(Vc)]

O D(PLY [ dof vy ), PLY | dof vy
O 'O
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Further Properties of the Explanation Score

« £,(V-) > 0iff fixing coalition values gets the distribution of the
target closer to the point mass distribution Y ~ 9,,

« £,(V-) < 0iff fixing coalition values moves the distribution of the
target further away from the point mass distribution Y ~ 5y

« £,(V-) = 0iff fixing coalition values does not change the distance
to the point mass distribution Y’ ~ 9,

« E,(Ve) = 1iff P[Y | do(V)] = 6,, and we say the coalition fully
explains the target value
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Further Properties of the Explanation Score

* If avariable V; isirrelevant for Y, it does not change the
explanation score when it is added to a coalition

« If £,(V;) = 1, then all coalitons containing V- also have
explanation score 1

* For values smaller than 1, the explanation score is not monotonic
since some variables can have contradictory evidence for an
outcome (unless a coalition already fully explains that outcome)

« If £,(V-) = 1, there exists no variable outside of I/ that could
change the value of Y
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Practical Application of ICECREAM’s
Explanation Score

* Use KL-divergence as distance measure, simplifies explanation
score

log(P[Y| do(V)])
log(P[Y])

gv(VC) =1-

* Loop through all possible coalitions, starting with smallest

* Stop when explanation score reaches a threshold a for some
value a € |0, 1] (close to 1)
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Experiments and Results



RCA in Cloud Application

e System architecture is known (domain knowledge)

* Causal graph isinverted system topology

e Services produce errors with different probabilities

* Errors from parents are propagated if there are many enough

X1 = order_db
X9 = customer_db
X3 = shipping

X4 = product_db
X5 = order

X = auth

X7 = product

Xg = caching

X9 = api

X190 = www
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RCA in Cloud Application
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* Compared to RCA method
by Budhathoki et al. (2022)
and a simple traversal
algorithm

* Only ICECREAM identifies
the correct set of root
causes if more than 1 issue
IS happening in the system
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Explain ML Model’s Credit Risk Prediction

* Use the South German Credit data set (Gromping 2019) to train an
ML model to predict if a credit application has high or low risk

e Consider the “real world” as a common
cause to the input features, which then

do not directly causally influence each other
» Compare ICECREAM to SHAP method ,// \\
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Explain ML Model’s Credit Risk Prediction
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* When fixing the values of the coalition identified with ICECREAM,
the prediction remains stable

* For the top features identified by SHAP the prediction remains
also stable, but not as long as for ICECREAMs coalition
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Conclusion

* Novel approach for explainability and RCA
* Able to identify minimal coalitions explaining a target value
* Novel explanation score satisfying all desired properties

* Evaluated on different data sets and with different use cases
* Explain ML model: comparable performance to popular SHAP method

* RCA in cloud application: outperforms state-of-the art methods when
multiple root causes are present

* For practical applications, a more efficient algorithm needs to be
developed, particularly for identifying optimal interventions
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Questions?
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