Beyond Single-Feature Importance with ICECREAM

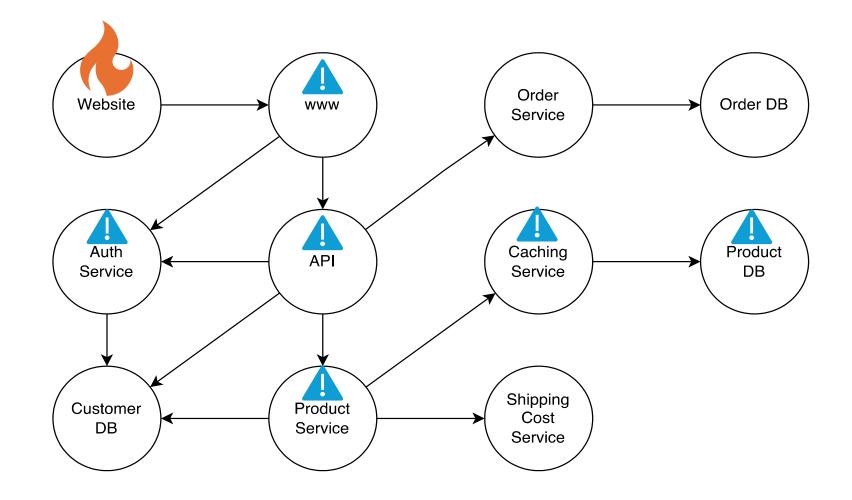
M. Oesterle, P. Blöbaum, A. A. Mastakouri, **E. Kirschbaum** CLeaR 2025

Agenda

Motivation

- Background: Graphical Causal Models
- ➢ ICECREAM
- > Experiments and Results
- ➢ Conclusion

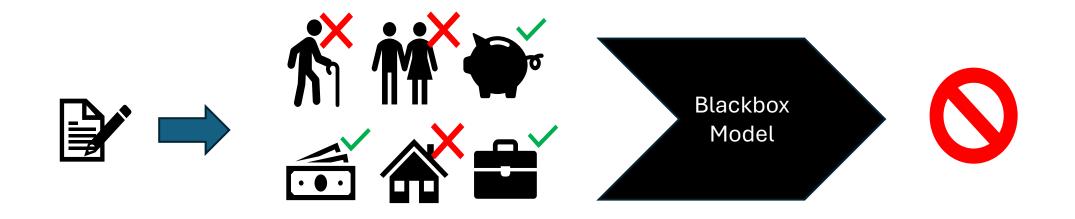
Eample 1: Cloud Application



6

Can we resolve the issue by fixing a *single* service, or do we need to fix *multiple* components?

Example 2: Credit Risk Prediction



Which features were respondible for the rejection of the credit application?

Was it a *single* feature, or the combination of *multiple* features?

What do existing methods do?

- Popular SHAP method (Lundberg and Lee, 2017) ranks and quantifies importance of *individual* features
 - 1. credit purpose
 - 2. housing situation
 - 3. personal status
 - 4. ...

But what combination of features was crucial for the outcome? How many features are actually required to explain the models decision?

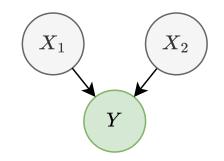
What does ICECREAM do instead?

- Identifying Coalition-based Explanations for Common and Rare Events in Any Model
- Detects combinations of variables whose interplay explain a certain outcome of a model or system
- Can be used for explainability and interpretability of any featuretarget system
- Can be applied to perform root cause analysis (RCA) in any system with known causal structure

Background: Graphical Causal Models

Background: Graphical Causal Models (GCM)

- Causal graph G = (V, E)
- Nodes = random variables $V = \{V_1, \dots, V_N\}$
- Edges $V_i \rightarrow V_j \in E$ represent causal relationships
- We split *V* as follows:
 - Y = target variable whose value we want to explain
 X_i = observed variables
 - Λ_i = unobserved variables



Background: Graphical Causal Models (GCM)

- Intervention: set variable V_i to some value v_i while all other variables keep their relationships
- Represented as cutting all incoming edges at the intervened variable
- Interventional distribution

$$\mathbb{P}\left[V_{j} \mid do(V_{i} = v_{i})\right] = \mathbb{P}\left[V_{j} \mid do(V_{i})\right] \neq^{*} \mathbb{P}\left[V_{j} \mid V_{i} = v_{i}\right]$$

* only equal if V_i has no causal parents

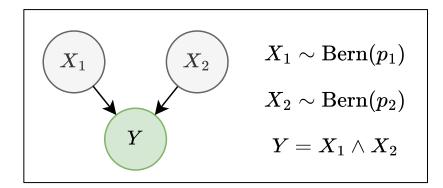
ICECREAM

What is the smallest coalition of variables which fully explains the target value y for an observation v?

→Define an explanation score that quantifies the influence of a set of

variables on the target variable

1. The explanation score of a coalition is not just the sum of the explanation scores of the individual variables.



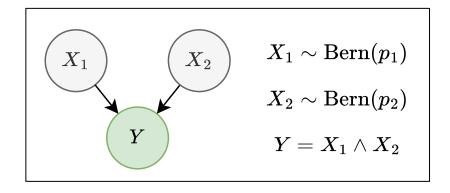
Event: $y = 0, x_1 = 0, x_2 = 0$

Already $x_1 = 0$ fully explains y = 0, similarly does $x_2 = 0$

get

→ the coalition $\{X_1, X_2\}$ should not a higher score than $\{X_1\}$ or $\{X_2\}$

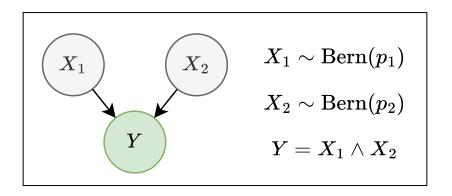
2. Rare events get a higher explanation score than common events.



- Event: $y = 1, x_1 = 1, x_2 = 1$
- Consider $p_1 = 0.001$, $p_2 = 0.9$:
- $\rightarrow X_1$ is the more interesting explanation
- → score for $\{X_1\}$ should be higher for $\{X_2\}$

than

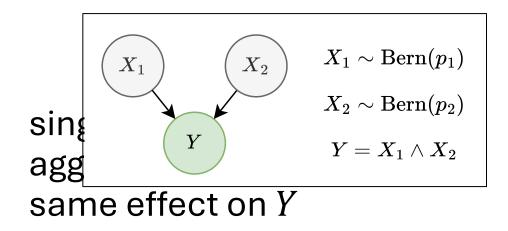
3. Explanation scores in anti-causal direction are zero.



Y cannot influence X_1 or X_2

 \rightarrow effects cannot explain their causes

4. The explanation score of a variable is not depend on how the other variables are grouped into coalitions.



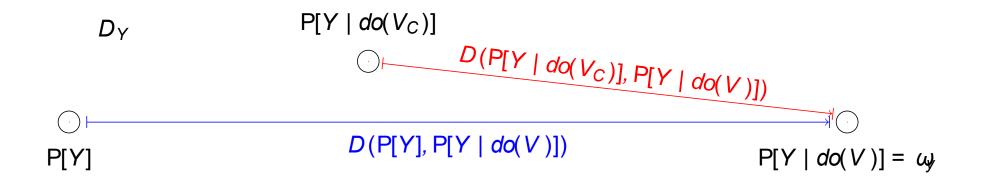
For the influence of X_1 on Y it should not matter if X_2 is actually a variable, or the variables with the

Formal Definition of ICECREAM's Explanation Score

Definition 1: Let $\mathcal{D}_{\mathcal{Y}}$ denote the set of all probability distributions over the domain \mathcal{Y} . Further let $D: \mathcal{D}_{\mathcal{Y}}^2 \to \mathbb{R}$ be a distance measure to quantify the distance between distributions in $\mathcal{D}_{\mathcal{Y}}$. The explanation score of the coalition $V_C \subseteq V$ with respect to the observation $v \in \mathcal{V}$ is then defined as the function $\mathcal{E}_v: 2^I \to (-\infty, 1]$ with

$$\mathcal{E}_{v}(V_{C}) = 1 - \frac{D(\mathbb{P}[Y| do(V_{C})], \mathbb{P}[Y| do(V)])}{D(\mathbb{P}[Y], \mathbb{P}[Y| do(V)])}$$

Intuition behind ICECREAM's Explanation Score



Further Properties of the Explanation Score

- $\mathcal{E}_{v}(V_{C}) > 0$ iff fixing coalition values gets the distribution of the target closer to the point mass distribution $Y \sim \delta_{y}$
- $\mathcal{E}_v(V_C) < 0$ iff fixing coalition values moves the distribution of the target further away from the point mass distribution $Y \sim \delta_y$
- $\mathcal{E}_v(V_C) = 0$ iff fixing coalition values does not change the distance to the point mass distribution $Y \sim \delta_y$
- $\mathcal{E}_v(V_C) = 1$ iff $\mathbb{P}[Y \mid do(V_C)] = \delta_y$, and we say the coalition fully explains the target value

Further Properties of the Explanation Score

- If a variable V_i is irrelevant for Y, it does not change the explanation score when it is added to a coalition
- If $\mathcal{E}_{v}(V_{C}) = 1$, then all coalitons containing V_{C} also have explanation score 1
- For values smaller than 1, the explanation score is not monotonic since some variables can have contradictory evidence for an outcome (unless a coalition already fully explains that outcome)
- If $\mathcal{E}_{v}(V_{C}) = 1$, there exists no variable outside of V_{C} that could change the value of Y

Practical Application of ICECREAM's Explanation Score

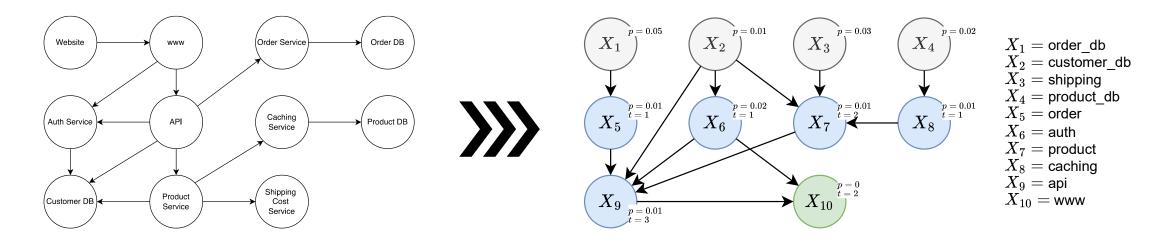
• Use KL-divergence as distance measure, simplifies explanation score

$$\mathcal{E}_{v}(V_{C}) = 1 - \frac{\log(\mathbb{P}[Y| do(V_{C})])}{\log(\mathbb{P}[Y])}$$

- Loop through all possible coalitions, starting with smallest
- Stop when explanation score reaches a threshold α for some value $\alpha \in [0, 1]$ (close to 1)

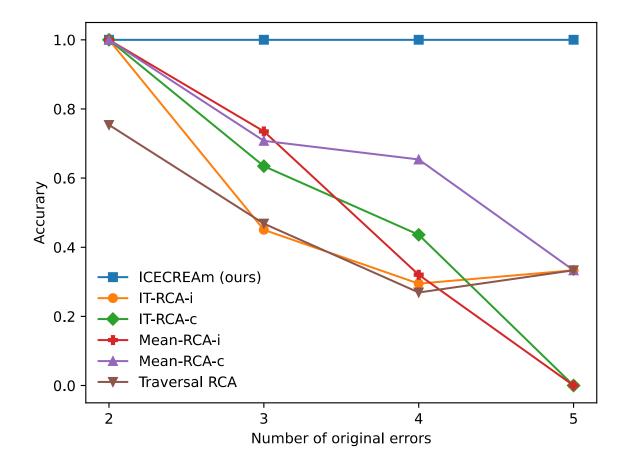
Experiments and Results

RCA in Cloud Application



- System architecture is known (domain knowledge)
- Causal graph is inverted system topology
- Services produce errors with different probabilities
- Errors from parents are propagated if there are many enough

RCA in Cloud Application

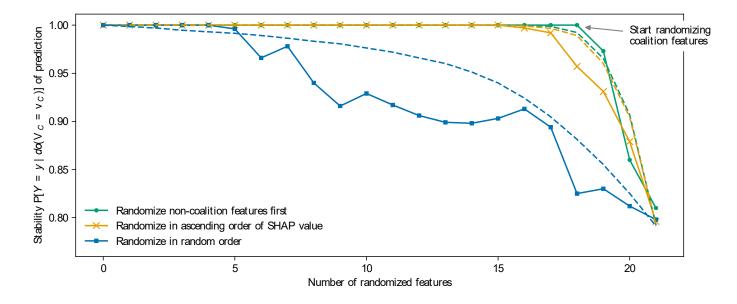


- Compared to RCA method by Budhathoki et al. (2022) and a simple traversal algorithm
- Only ICECREAM identifies the correct set of root causes if more than 1 issue is happening in the system

Explain ML Model's Credit Risk Prediction

- Use the South German Credit data set (Grömping 2019) to train an ML model to predict if a credit application has high or low risk
- Consider the "real world" as a common cause to the input features, which then do not directly causally influence each other
- Compare ICECREAM to SHAP method

Explain ML Model's Credit Risk Prediction



- When fixing the values of the coalition identified with ICECREAM, the prediction remains stable
- For the top features identified by SHAP the prediction remains also stable, but not as long as for ICECREAMs coalition

Conclusion

- Novel approach for explainability and RCA
- Able to identify minimal coalitions explaining a target value
- Novel explanation score satisfying all desired properties
- Evaluated on different data sets and with different use cases
 - Explain ML model: comparable performance to popular SHAP method
 - RCA in cloud application: outperforms state-of-the art methods when multiple root causes are present
- For practical applications, a more efficient algorithm needs to be developed, particularly for identifying optimal interventions

References

- Kailash Budhathoki, Lenon Minorics, Patrick Blöbaum, and Dominik Janzing. Causal structure-based root cause analysis of outliers. In International Conference on Machine Learning, pages 2357–2369. PMLR, 2022.
- Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS'17, pages 4768–4777, Red Hook, NY, USA, 2017.
- Ulrike Grömping. South German Credit Data: Correcting a Widely Used Data Set, November 2019.

Questions?