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From Machine Learning to Generative AI: 
Advancing Statistical Model-Agnostic 
Interpretability with Local Explanations 
(SMILE)



Highlights on eXplainable Artificial Intelligence (XAI)

Some basic information.

LIME Explainability Procedure

Discussing how LIME works on a simple example.

SMILE IDEA
Discussing the idea and providing some experiments.

Table of Content
What I am going to discuss
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Expanding SMILE for GenAI 
Discussing how SMILE has been expanded for GenAI (LLMs, MLLMs, etc).
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Trustworthy 

AI

• Federated Learning
• Data Anonymisation
• Access Control
• Ethical Framework

• Human-in-the-loop
• Human Oversight Committee
• Algorithmic Impact Assessments

• Fairness Metrics
• Regular Audits
• Data Augmentation
• Inclusive Training Data

• Environmental Impact Assessments
• Social Impact Assessments
• Open Data

• Robust Data Pre-processing
• Robust Feature Engineering
• Ensemble Methods
• Error Handling and Fail-Safes

• Data Logging
• Model Versioning
• Auditing
• Risk Management

• Explainability
• Interpretability

EU AI ACT
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Belle, V., & Papantonis, I. (2021). Principles and practice of explainable machine 
learning. Frontiers in big Data, 39.

LRP
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LIME-based Approaches



LIME
Discussing LIME Algorithm in a 
simple tabular example

GIF from: storyset.com
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LIME: Local Interpretable Model-agnostic Explanations
Let’s discuss a simple example of LIME on a tabular hypothetical dataset

Source: https://arteagac.github.io/blog
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https://arteagac.github.io/blog


LIME: Local Interpretable Model-agnostic Explanations
Let’s discuss a simple example of LIME on a tabular hypothetical dataset

Using model.predict(X_perturb)Generating uniform 
random numbers

Source: https://arteagac.github.io/blog
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LIME: Local Interpretable Model-agnostic Explanations
Let’s discuss a simple example of LIME on a tabular hypothetical dataset

Position

Label

Model.predict

Kernel

Weight

Linear 
Regression

Using LR 
coefficients as 

feature 
explainability
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IDEA!
SMILE: Statistical Model-
agnostic Interpretability with 
Local Explanations

GIF from: storyset.com
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SMILE: Statistical Model-agnostic Interpretability with Local Explanations
Let’s discuss the same simple example with SMILE

Position

LabelStatistical 
Distance (e.g. 
Wasserstein)

E[Model.predict]

Kernel

Weight

Linear 
Regression

Using LR 
coefficients as 

feature 
explainability
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SMILE: Statistical Model-agnostic Interpretability with Local Explanations
Cumulative Distribution Function (CDF) Distance Measures

Wasserstein

Kolmogorov-Smirnov

Kuiper 

Anderson-Darling

Cramer-Von Mises

Wasserstein-Anderson-Darling (WAD)
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SMILE: Statistical Model-agnostic Interpretability with Local Explanations
Cumulative Distribution Function (CDF) Distance Measures

Cramer-Von Mises Distance

Kuiper DistanceKolmogorov-Smirnov Distance

Wasserstein Distance
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Wasserstein vs. Cosine

Source : Horan, C. (2021) Wasserstein Distance and Textual Similarity, https://neptune.ai/blog/wasserstein-distance-and-textual-similarity 15
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Comparing SMILE with LIME and SHAP for Boston House Pricing Prediction
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Comparing SMILE with LIME and SHAP with Force Plot

SHAP

SMILE

LIME
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Comparing with Human Feature Impact Estimates
Let’s discuss a simple example of LIME on a tabular hypothetical dataset

Lundberg, S. M., & Lee, S. I. (2017, December). A unified approach to interpreting model 

predictions. In Proceedings of the 31st international conference on neural information 

processing systems (pp. 4768-4777).
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Adversarial 
Attacks
Fooling LIME and SHAP: 
Adversarial Attacks on Post hoc 
Explanation Methods by Dylan 
Slack et al. (2020)

GIF from: storyset.com
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Adversarial Attacks
Fooling LIME and SHAP: Adversarial Attacks on Post-hoc Explanation Methods

* COMPAS dataset for recidivism risk prediction
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SMILE for 
Images
Explaining the SMILE Procedure 
for local explainability in Image 
classifiers.

GIF from: storyset.com
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LIME for Image Classifiers
How LIME provides explainability for image classifiers?
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SMILE for Image Classifiers
How SMILE provides explainability for image classifiers?
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SMILE for Image Classifiers
How SMILE provides explainability for image classifiers?

InceptionV3
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LIME SMILEOriginal

Comparison between LIME and SMILE for Image Classification

[1] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD 

international conference on knowledge discovery and data mining (pp. 1135-1144
25



LIME SMILEOriginal

Comparison between LIME and SMILE for Image Classification

Source: https://arteagac.github.io/blog

In SMILE, as we process more information (images instead of perturbation vectors), we expect more accurate results.

26

https://arteagac.github.io/blog


BayLIME – “non_Bay”

SMILE

Original

Comparison between BayLIME and SMILE for Image Classification

BayLIME – “Bay_non_info_prior”

BayLIME – “Bay_info_prior” BayLIME – “BayesianRidge_inf_prior_fit_alpha”

Source: https://github.com/x-y-zhao/BayLime/blob/master/BayLIME_tutorial_images.ipynb 27
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Heatmap Comparison between SMILE Distance Measure 
for Image Classification



SMILE for 
Point Cloud
Explaining the SMILE Procedure 
for local explainability in Point 
Cloud classifiers.
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Ahmadi, S. M., Aslansefat, K., Valcarce-Dineiro, R., & Barnfather, J. (2024). Explainability of Point Cloud Neural Networks Using SMILE: Statistical Model-

Agnostic Interpretability with Local Explanations. arXiv preprint arXiv:2410.15374.
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KernelSHAP*

LIME**

SMILE

C = 32 C = 64 C = 128 C = 1024

References: 

* Inspired by Lundberg, S.M. and S.-I. Lee, A unified approach to interpreting model predictions. Advances in neural information processing systems, 2017. 30.

** Tan, H. and H. Kotthaus. Surrogate model-based explainability methods for point cloud nns. in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022.
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LIME*

SMILE (all versions)

𝜎 = 0.1 𝜎 = 0.2 𝜎 = 0.3 𝜎 = 0.7

References: 

* Tan, H. and H. Kotthaus. Surrogate model-based explainability methods for point cloud nns. in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer 

Vision. 2022.
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Correctly Classified: 

Misclassified:

Predicted as 

‘Lamp’

Predicted as 

‘Plant’
Predicted as 

‘Bottle’

Predicted as 

‘Lamp’

ModelNet40:



SMILE for 
Texts
Explaining the SMILE Procedure 
for local explainability in Text 
classifiers.

GIF from: storyset.com
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LIME vs SMILE for Text Classifiers
How LIME and SMILE provide explainability for text classifiers?
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SMILE for Text Classifiers - Visualization

“For those who believe in God most of the big questions are answered But for those of us who can't readily accept the 
God formula the big answers don't remain stone-written. We adjust to new conditions and discoveries. We are pliable. 
Love need not be a command nor faith a dictum. I am my own god. We are here to unlearn the teachings of the 
church state, and our educational system. We are here to drink beer. We are here to kill war. We are here to laugh at 
the odds and live our lives so well that Death will tremble to take us - Charles Bukowski"

37



SMILE vs LIME and SHAP for Text Classifiers:
Quora Insincere Questions Classification

“Is it just me or have you ever been in this phase wherein you became ignorant to the people you once loved, 
completely disregarding their feelings/lives so you get to have something go your way and feel temporarily at ease. How 
did things change?"
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SMILE vs ELi5 Visualisation for Text Classifiers:
Quora Insincere Questions Classification

“Is it just me or have you ever been in this phase wherein you became ignorant to the people you once loved, 
completely disregarding their feelings/lives so you get to have something go your way and feel temporarily at ease. How 
did things change?"

39



SMILE for 
Generative 
AI
Explaining the SMILE Procedure 
for local explainability in Text 
classifiers.

GIF from: storyset.com
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gSMILE for Generative Models (LLMs, VLMs, MLLMs)

43
Dehghani, Z., Aslansefat, K., Khan, A., & Akram, M. N. (2025). Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability 

with Local Explanations. arXiv preprint arXiv:2505.21657. (Submitted to IEEE Transactions on Artificial Intelligence).
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Dehghani, Z., Aslansefat, K., Khan, A., & Akram, M. N. (2025). Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability 

with Local Explanations. arXiv preprint arXiv:2505.21657. (Submitted to IEEE Transactions on Artificial Intelligence).
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with Local Explanations. arXiv preprint arXiv:2505.21657. (Submitted to IEEE Transactions on Artificial Intelligence).
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Dehghani, Z., Aslansefat, K., Khan, A., & Akram, M. N. (2025). Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability 

with Local Explanations. arXiv preprint arXiv:2505.21657. (Submitted to IEEE Transactions on Artificial Intelligence).

A Change in Fidelity Assessment for LLMs
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Dehghani, Z., Aslansefat, K., Khan, A., & Akram, M. N. (2025). Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability 

with Local Explanations. arXiv preprint arXiv:2505.21657. (Submitted to IEEE Transactions on Artificial Intelligence).

The use of gSMILE for Bias and Fairness Evaluation
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Dehghani, Z., Aslansefat, K., Khan, A., & Akram, M. N. (2025). Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability 

with Local Explanations. arXiv preprint arXiv:2505.21657. (Submitted to IEEE Transactions on Artificial Intelligence).

Model-agnostics vs. Model-specific
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Dehghani, Z., Aslansefat, K., Khan, A., Rivera, A. R., George, F., & Khalid, M. (2024). Mapping the Mind of an Instruction-based Image Editing using SMILE. arXiv 

preprint arXiv:2412.16277. (Submitted to Nature npj Artificial Intelligence).

gSMILE for Multimodal Models

https://www.kaggle.com/code/zeinabdehghani/explaining-
gemini-image-editing-with-smile/notebook 
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preprint arXiv:2412.16277. (Submitted to Nature npj Artificial Intelligence).
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52
Dehghani, Z., Aslansefat, K., Khan, A., Rivera, A. R., George, F., & Khalid, M. (2024). Mapping the Mind of an Instruction-based Image Editing using SMILE. arXiv 

preprint arXiv:2412.16277. (Submitted to Nature npj Artificial Intelligence).



53
Moghaddam, Z. Z. S., Dehghani, Z., Rani, M., Aslansefat, K., Mishra, B. K., Kureshi, R. R., & Thakker, D. (2025). Explainable Knowledge Graph Retrieval-Augmented 

Generation (KG-RAG) with KG-SMILE. arXiv preprint arXiv:2509.03626. (Submitted to Information Systems Frontiers).

KG-SMILE



Conclusion

✓ SMILE extends LIME by integrating statistical distance measures (e.g., Wasserstein, Cramér–von Mises, Kuiper) to 

produce more stable and reliable local explanations.

✓ The method is completely model-agnostic, making it suitable for explaining classical ML, deep learning, and Generative 

AI (gSMILE) models.

✓ SMILE inherits the visual interpretability of LIME and the quantitative depth of SHAP, combining their advantages while 

improving robustness.

✓ Across images, text, and 3D point cloud modalities, SMILE consistently delivers more coherent and less noisy feature 

attributions.

✓ Experimental results demonstrate that SMILE is more resilient to adversarial manipulation than LIME and SHAP, though 

not entirely immune.

✓ The framework now supports LLMs, VLMs, and multimodal models through gSMILE, enabling explainability, fidelity 

analysis, and bias/fairness evaluation for generative tasks.

✓ Future directions include expanding SMILE for various directions, including Image Captioning, QML, and Geo-SMILE.

54



SMILE Reproducibility

https://github.com/Dependable-Intelligent-Systems-Lab/xwhy 
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https://github.com/koo-ec/KG-SMILE

https://github.com/Sara068/Mapping-the-Mind-of-an-Instruction-based-
Image-Editing-using-SMILE

https://github.com/Sara068/LLM-SMILE

https://github.com/koo-ec/Geo-SMILE (Not Public Yet)
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Thank You
If you have any question, please feel free to ask
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k.aslansefat@hull.ac.uk 
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