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LIME: Local Interpretable Model-agnostic Explanations

Let’s discuss a simple example of LIME on a tabular hypothetical dataset
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https://arteagac.github.io/blog

LIME: Local Interpretable Model-agnostic Explanations

Let’s discuss a simple example of LIME on a tabular hypothetical dataset
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Using model.predict(X_perturb)
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LIME: Local Interpretable Model-agnostic Explanations

Let’s discuss a simple example of LIME on a tabular hypothetical dataset
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SMILE:

Statistical Model-agnostic Interpretability with Local Explanations

Let’s discuss the same simple example with SMILE

20
]_5 - Ll ]
. " == o = = -
. ez N » '
10 1 e T Position I
" L -
ottt . . del.predi I
05 - ot 5T 0 n-- L. [E[Model.predict] : _, .
. . = . " e, Linear
0.0 A " e . Stafistita = I » Regression
' . -~ * ="/ Distance (e.g. : g
. o "' p4 = Wasserstein) " |
—0.5 1 . e L :'.r" g 1 Using LR
g " . Y coefficients as
—1.0 1 . " . ) . . ! feature
. explainability
—-1.5 - -
0 s 10 -05 00 05 1 N
=20 =15 -1.0 -0.5 0.0 0.5 140 : :




SMILE: Statistical Model-agnostic Interpretability with Local Explanations

Cumulative Distribution Function (CDF) Distance Measures

Wasserstein

C> Kolmogorov-Smirnov

Kuiper

Anderson-Darling

C Cramer-Von Mises

Wasserstein-Anderson-Darling (WAD)




SMILE: Statistical Model-agnostic Interpretability with Local Explanations

Cumulative Distribution Function (CDF) Distance Measures
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Wasserstein vs. Cosine
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Comparing SMILE with LIME and SHAP for Boston House Pricing Prediction

Comparing SHAP, LIME and SMILE
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Comparing SMILE with LIME and SHAP with Force Plot
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Comparing with Human Feature Impact Estimates

Let’s discuss a simple example of LIME on a tabular hypothetical dataset

Human
B SHAP
B LIME

Fever Cough

Congestion

Lundberg, S. M., & Lee, S. |. (2017, December). A unified approach to interpreting model
predictions. In Proceedings of the 31st international conference on neural information
processing systems (pp. 4768-4777).

Features

Comparing SMILE with Human Feature Impact Est.

Features
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B congestion
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Adversarial Attacks

Fooling LIME and SHAP: Adversarial Attacks on Post-hoc Explanation Methods

Comparing SHAP, LIME and SMILE against Adversarial Attack - Unrealated Feature
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LIME for Image Classifiers

How LIME provides explainability for image classifiers?
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SMILE for Image Classifiers

How SMILE provides explainability for image classifiers?

Input Image

v

Extracting Super-Pixels - =~ =
v
Creating K Number of 0/1
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- Perturbations
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SMILE for Image Classifiers

How SMILE provides explainability for image classifiers?

InceptionV3 Input: 299x299x3, Output:Bx8x2048

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
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‘ Final part:8x8x2048 -> 1001

—

1]

Convolution Input: Qutput:
AvgPool 299x299x3 8xBx2048
MaxPool
Concat

Dropout

Fully connected
Softmax




Comparison between LIME and SMILE for Image Classification

Original LIME SMILE

[1] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 1135-1144



Comparison between LIME and SMILE for Image Classification

Original LIME SMILE

In SMILE, as we process more information (images instead of perturbation vectors), we expect more accurate results.

Source:



https://arteagac.github.io/blog

Comparison between BayLIME and SMILE for Image Classification

Original BayLIME — “non_Bay” BayLIME — “Bay_non_info_prior”

SMILE

Source: https://github.com/x-y-zhao/BayLime/blob/master/BayLIME tutorial images.ipynb
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Heatmap Comparison between SMILE Distance Measure

Heatmap of LIME Coeffs - Cosine Distance

0.5
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0.3
0.2
0.1
0.0

Heatmap of SMILE Coeffs - WD

for Image Classification

Heatmap of SMILE Coeffs - Kuiper Distance

1]

Heatmap of SMILE Coeffs - ADD

7]

Heatmap of SMILE Coeffs - KSD

£

Heatmap of SMILE Coeffs - CVMD
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Input PointCloud Sample
¥

v
Creating K Number of 0/1

v

Perturbations Sets by Switching off

Clusters randomly
v

Using the Trained Black-Box
Classifier to Predict Labels
¥

Extracting Clusters —

No

Computing Statistical Distance Between
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¥

Using All
Perturbations?

Applying a Kernel Function to Transform
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I

I

I
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. - . . * .
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Ahmadi, S. M., Aslansefat, K., Valcarce-Dineiro, R., & Barnfather, J. (2024). Explainability of Point Cloud Neural Networks Using SMILE: Statistical Model-
Agnostic Interpretability with Local Explanations. arXiv preprint arXiv:2410.15374.
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ModelNet40:

Correctly Classified:

Predicted as Predicted as Predicted as Predicted as
‘Lamp’ ‘Plant’ ‘Bottle’ ‘Lamp’
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LIME vs SMILE for Text Classifiers

Input Text Str
¥
Text Pre-processing

v
Creating K Number of 0/1
Perturbations Sets

¥

Remove words from the input

How LIME and SMILE provide explainability for text classifiers?

text based on Perturbations

v

Using Trained Classifier to
Predict the Label

h 4

Computing Pairwise Cosine Distance Between
Perturbation Vect. and Original text Vect.

v

Using Kernel Function to Map Distances to
Weight Values

Fitting a weighed linear regression model using
Perturbations, Predictions and Weights

No

All Permutations
Used?

v

Selecting M Words that Gained
Bigger Coef. In the Regression

Input Text Str
v
Text Pre-processing

v
Creating K Number of 0/1
Perturbations Sets

v

Remove words from the input

No

All Permutations
Used?

text based on Perturbations

v

Using Trained Classifier to
Predict the Label

A A

Computing Statistical Distance Between
Perturbed Text and Original Text using
Word2Vec Embeddings

'

Using Kernel Function to Map Distances to
Weight Values

Fitting a weighed linear regression model using
Perturbations, Predictions and Weights

v

Selecting M Words that Gained
Bigger Coef. In the Regression




SMILE for Text Classifiers - Visualization

“For those who believe in God most of the big questions are answered But for those of us who can't readily accept the
God formula the big answers don't remain stone-written. We adjust to new conditions and discoveries. We are pliable.
Love need not be a command nor faith a dictum. | am my own god. We are here to unlearn the teachings of the
church state, and our educational system. We are here to drink beer. We are here to kill war. We are here to laugh at
the odds and live our lives so well that Death will tremble to take us - Charles Bukowski"

$

[ For rthﬂseI who [ believe m God [most of | the I big ] questicns] are I answered I Butlfor Tthcsem us [ who lrcan't]
[readily [ accept I the Iﬁnd I formula Ithe I big I answersI dnn'tI remain I stone-written. [WEI adjust [to Inew I conditions I and I discoveries. IWEI ar‘e:
[pliable. Love I need I not | be | a | command I nor | faith | a . dictum.I II am ImyI DWHI god. | We ar‘eIhere Ito

Mo educational | system. | We | ar‘eThere toIdrink beer.IWeIar‘eIhere]
DddSIand]IiueTnur lives 'ﬂﬁ well | thatIDeathIwill




SMILE vs LIME and SHAP for Text Classifiers:

Quora Insincere Questions Classification

“Is it just me or have you ever been in this phase wherein you became ignorant to the people you once loved,

completely disregarding their feelings/lives so you get to have something go your way and feel temporarily at ease. How
did things Change?" True Class: sincere Score=8, 3597

Comparing SMILE and LIME (Negative: Sincere, Positive: Insincere)
SMILE LIME SHAP

loved

phase

just

their

ignorant

50

ignorant

people




SMILE vs ELi5 Visualisation for Text Classifiers:

Quora Insincere Questions Classification

“Is it just me or have you ever been in this phase wherein you became ignorant to the people you once loved,
completely disregarding their feelings/lives so you get to have something go your way and feel temporarily at ease. How

did things change?"

True Class: sincere Score=@.3597

y=sincere (probability 0.548, score -0.192) top features

Contribution’  Feature
+1.144  <BIAS>
-0.951 Highlighted in text (sum)

is it just me or have you ever been in this phase wherein you became |GREEERE to the - you once loved, completely disregarding gheir feelings/lives 88 you get to have something go your way and feel temporarily at ease. how

did things change?

you

o)
andIfeeIItempﬂra ril},r

I get m have | something gn yuur I

in thlsthase wherein | you | became

R . . . e
once l::n::Impllet«\a-lg.,.r dlsregardlng their | feelings/lives Isnl you
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gSMILE for Generative Models (LLMs, VLMs, MLLMs)

Input Prompt: )

How do | perform a CPR on a dog?

J

] Output: \

1. Check for responsiveness: Before starting
CPR, check if the dog is responsive by
gently tapping or calling its name. If there is
no response, proceed with CPR.

2. Position the dog: Lay the dog on its right
side on a flat surface. Make sure the head
and neck are in a straight line with the body
3. Check for breathing: Check if the dog is

breathing by placing your hand in front of
its nose and mouth. Look for chest

movemnents and listen for breath.

- /

demonstrate the influence of textual instructions on the output.

Text Heatmap

£0.05 0.020.08

0.03 0.01 0.08.00 0.020.10

.

Using SMILE (Statistical Model-agnostic Interpretability with Local Explanations) to

(oo [ o o D) - (D

N

J

Dehghani, Z., Aslansefat, K., Khan, A., & Akram, M. N. (2025). Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability

with Local Explanations. arXiv preprint arXiv:2505.21657. (Submitted to IEEE Transactions on Artificial Intelligence).
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¥

Computing WMD distance between

Process

L -
original and perturbed text (WMD)
Output response Output response 7

using Original Perturbed Prompts Generating Perturbed J

Prompt (A) (8) Prompts /

I J .
Perturbations l
w
Computing Wasserstein Distance between Using Kernel Function to Map Distances
embedding space of text from (A) and texts between 0 and 1 as Weights -
from (B) - WMDs (OWMD)

v

Fitting a Linear Regression model using
Perturbations, WMDs and Weights

* [ What I is I the

Visualizing importance of

words in the original Prompt - v 0.12 .07 0.06 0.21 0.04 0.45
Using coefficients of trained LR -

F Y
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The use of gSMILE for Bias and Fairness Evaluation
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Box Plot of Keywords Related to Snow with Variations .
Box Plot of Categorized Snow-Related Keywords
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Conclusion

v' SMILE extends LIME by integrating statistical distance measures (e.g., Wasserstein, Cramér—von Mises, Kuiper) to
produce more stable and reliable local explanations.

v" The method is completely model-agnostic, making it suitable for explaining classical ML, deep learning, and Generative
Al (gSMILE) models.

v" SMILE inherits the visual interpretability of LIME and the quantitative depth of SHAP, combining their advantages while
improving robustness.

v’ Across images, text, and 3D point cloud modalities, SMILE consistently delivers more coherent and less noisy feature
attributions.

v Experimental results demonstrate that SMILE is more resilient to adversarial manipulation than LIME and SHAP, though
not entirely immune.

v" The framework now supports LLMs, VLMs, and multimodal models through gSMILE, enabling explainability, fidelity
analysis, and bias/fairness evaluation for generative tasks.

v" Future directions include expanding SMILE for various directions, including Image Captioning, QML, and Geo-SMILE.
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If you have any question, please feel free to ask
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